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Abstract 
 
Does the concept of General Purpose Technologies help explain periods of faster and slower 
productivity advance in economies? The paper develops a new comparative data set on the 
usage of electricity in the manufacturing sectors of the USA, Britain, France, Germany and 
Japan and proceeds to evaluate the hypothesis of a productivity bonus as postulated by many 
existing GPT models. Using the case of the diffusion of electrical power in the early 
twentieth century this paper shows that there was no generalized productivity boost from 
electrical power diffusion as postulated by many existing GPT models. The productivity 
gains from this GPT varied widely across economies and industries, suggesting that the 
power of GPTs to predict aggregate or sectoral growth is limited.   
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INTRODUCTION  
 
This paper challenges the usefulness of General Purpose Technology (GPT) theory as a way 

of conceptualising the relationship between technological advances and long-term historical 

economic growth.  We do this by concentrating on GPT theory’s main and most intuitive 

claim: that the introduction of a GPT must have long-term positive repercussions on growth 

through a non-ephemeral shift in productivity.   

To make our case we look at electricity diffusion in the early 20th century.   Electricity 

is one of the very rare examples of a technology that is unanimously seen in the literature as 

an historical example of a GPT.  The consensus is that in the early 20th century electricity 

diffusion improved aggregate productivity mainly by increasing labour productivity in the 

manufacturing sector.  We therefore investigate the link between electricity diffusion and 

labour productivity in this sector where the effects of the new GPT should be more obvious 

and prominent.  We start by looking at the quantitative record of the relationship between 

electricity diffusion and productivity in the long term in a comparative perspective by 

employing time-series quantitative methods to investigate the historical experience of a 

number of industrial countries beyond the US.  We find that the result previously observed 

for the US of a strong relationship between electricity diffusion and long-term productivity 

increases cannot be readily extended to other countries.  The claim to generality of the GPT 

theory seems substantially weakened by the fact that there are examples of countries in which 

electricity diffusion does not engender a positive shift in long term productivity.  

Moreover, we complement this finding by investigating the micro-level mechanism 

that supposedly underpins the relationship between electricity diffusion and productivity.  

This mechanism is that the diffusion of electricity had considerable effects on aggregate 

productivity because it brought about substantial productivity increases in a countless variety 

of industrial processes and sectors (the ‘general’ part of GPT).  To look at the relationship 

between electricity diffusion and productivity shifts at the micro-level we use the example 

provided by the UK manufacturing sector in the early 1930s. The UK Census of Production 

for 1935 is one of the few historical sources outside the US that provide extensive 

disaggregated data on output, labour input and electricity consumption by industrial sector.  

On the basis of this data we observe that the correlation between electricity diffusion and 

labour productivity is at best moderate and on many counts weak.     

There are five steps to our analysis.  In section 1 we review the literature. In section 2 

we present our data providing quantitative evidence on electricity usage in the manufacturing 
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sector on a per worker basis for five of the major industrial countries before WWII.  In 

section 3 we use this macro data to show that, at the aggregate level, the national electricity 

diffusion paths were not necessarily associated with a productivity bonus in the 

manufacturing sector.  This result challenges the heuristic power of the key empirical 

macroeconomic hypotheses of the GPT literature.  In section 4 we use detailed disaggregated 

information on electricity consumption per worker and output growth contained in the UK 

Census of Production for 108 manufacturing industries for the years 1930 and 1935 to assess 

the nature, spread, and effects of the electricity diffusion process at the industry level.  Again 

we fail to find unambiguous evidence of a clear relationship between electricity diffusion and 

surges in productivity.  In section 5 we conclude by observing that the theory in itself is 

problematic as it gives undue emphasis to one dimension of the effects of technological 

innovation over productivity (the width of the diffusion process) while underplaying two 

other dimensions that are in principle equally important (the depth of the potential 

productivity benefits and the rapidity of the diffusion of the new technology).  As such the 

theory provides an inaccurate description of historical economic growth. 

 

       

1. GPT THEORY AND ELECTRICITY: A SURVEY 

That technological change is an important determinant of modern economic growth is an idea 

that most economists would agree upon.  However, the details of this relationship are less 

clear.  In the last two decades a new way to conceptualise the relationship between 

technology and growth has emerged: the idea of General Purpose Technologies. GPTs are 

seen as infrequent but pervasive exogenous technological shocks able to  generate  low 

frequency (long-term) positive effects on economic growth by transforming the productivity 

potential of economies (Jovanovic and Rousseau, 2005; Aghion and Howitt, 2009).   

To date much of the work on GPTs has been theoretical in nature, informing us of 

possible outcomes for economic growth but offering limited insights on actual historical 

economic growth. Working with fairly simple prototype models of GPTs a number of 

macroeconomic growth hypotheses have been accepted in the literature; for example, much 

of the early literature (Hornstein and Krusell 1996, Greenwood and Yorokoglu 1997), argues 

that the diffusion of a new GPT is correlated with a productivity slowdown in the early phase 

of the diffusion process, and after some time this is followed by productivity acceleration.  As 

the title of a 1998 article by Helpman and Trajtenberg put it there would be “a time to sow 
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and a time to reap”.1  Indeed it is these growth effects that make GPTs inherently different 

from other technological changes.  As Helpman puts it: 

Growth that is driven by general purpose technologies is different 
from growth driven by incremental innovation.  Unlike incremental 
innovation, GPTs can trigger an uneven growth trajectory, which 
starts with a prolonged slowdown followed by a fast acceleration. 

(Helpman, 2004, p. 51)   
 

This idea can also be found in David (1991), in Bresnahan and Trajtenberg (1995), in 

Helpman and Trajtenberg (1998a and 1998b), in Aghion and Hewitt (1998)2 and has been 

specified as a stylized fact of economic growth in the survey of GPTs by Jovanovic and 

Rousseau (2005, p. 1187) who state:  

But overall the evidence clearly supports the view that technological 
progress is uneven, that it does entail the episodic arrival of GPTs, 
and that these GPTs bring on turbulence and lower growth early on 
and higher growth and prosperity later. The bottom line is that with a 
wider body of data and fifteen more years of it than David (1991) had 
at his disposal, we confirm his hypothesis that Electrification and IT 
adoption are manifestations of the same force at work, namely the 
introduction of a GPT. 

 
And yet GPT models are not univocal in their predictions of the effects of GPTs on 

productivity.  For example the prediction of a productivity slowdown in the early stages of the 

arrival of a new GPT is not universally accepted, and part of the theoretical literature on 

GPTs casts doubts as to whether a slowdown is a necessary feature of describing the effects 

of a new GPT (Lipsey et al., 2005). The only feature that seems common to all GPT models 

(and has the most intuitive appeal) is that the introduction of a new GPT should eventually 

determine a productivity surge.  Therefore, here we use the available data to evaluate the 

evidence only on the central claim of the GPT theory, that of a productivity bonus.   

GPT models are, at present, simple thought experiments and have serious limitations 

when used to describe and explain historical economic growth.  Lipsey et al. (2005, p. 384) 

review the literature as it developed since the early 1990s and argue that all models to date 

share the common problem that they deal with a complex historical economic system 

inappropriately, seeing shifts in the rate of economic growth as the outcome of a single GPT. 

In reality, at any point in time, change in the rate of economic growth will be an outcome of 

                                                 
1  This hypothesis follows David 1990. 
 
2 A similar argument is developed earlier by Phelps-Brown and Handfield-Jones (1952) as an application to the 
late 19th-century  “climacteric” in Britain’s economic growth. 
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the stock of GPTs at different stages of their life cycle, and as such, the link between a 

particular GPT and historical economic growth is not uniquely determined. So while episodic 

effects on economic growth are a reasonable research hypothesis, the expectation that they 

would generate long-term growth regularities or quasi-cyclical patterns in the shape of a 

productivity slowdown followed by a productivity surge is far more questionable.   

 In the last few years the GPT approach has come under growing attack.  Joel Mokyr 

suggested that it can hardly be described as a theory and that its academic currency is on the 

wane (Mokyr, 2006).  Alexander Field (2011) convincingly suggests that GPT theory has 

little heuristic power.  Moreover he shows that the criteria commonly used by the literature to 

identify GPTs and to separate them from the rest of technical progress (what Helpman 

describes as incremental innovation) are at best subjective.  But they are also flawed in the 

sense of being too restrictive and to exclude technological transformations likely to produce 

significant growth effects.  Indeed the impossibility of effectively using the proposed criteria 

for GPT selection has led to the compilation of vastly subjective and heterogeneous lists of 

historical examples of GPTs.  The heterogeneity of choice is such that only three GPTs 

appear in all the eleven compilations surveyed by Field.  They are what Field calls the Big 

Three namely: (1) IT or ICT (or more specifically semiconductors, or computer, or Internet); 

(2) electricity; and (3) steam.  These are indeed the three GPTs mentioned in the original 

article by David (1990) from which much of the GPT literature originates.  

Field observes that steam has already been dealt a serious blow in its status as a GPT by 

Crafts and Mills (2004).  Moreover, we note that it is very difficult to describe steam as a 

GPT as its application was restricted to an exceedingly small number of uses for the first half 

century after Newcomen’s Dudley Castle Machine of 1712.  Even after Watt invented the 

separate condenser, steam engine take-up remained for many decades slow and limited to a 

handful of uses (mostly mining).  Similarly, the development of high-pressure steam engines 

in the first two decades of the 19th century did not expand steam use much beyond the realm 

of mining. It is only with the further advances in high-pressure technology and with the 

arrival of compounding in the 1840s and 50s, that steam can start to lay claims of generality 

in its use at least when it comes to textile production, metallurgy, land and, later, sea 

transport.  Yet, even in 1870 two thirds of steam power was concentrated in coal-mining, 

cotton textiles, and metal manufactures (Crafts and Mills, 2004).  In other words it took more 

than a century and a half for steam to become a GPT.  The development of steam was so 

slow, its diffusion process so gradual, as to prevent any of the sudden accelerations and 

decelerations in growth and productivity that theory associates with GPTs.   
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This leaves GPT literature with only two agreed examples: ICT; and its historical 

antecedent: electricity.  We concentrate on the latter.  In particular we look at the diffusion of 

electricity in the manufacturing sector before World War II. The focus on the manufacturing 

sector is the result of evidence indicating that the acceleration in US labour productivity 

growth during the 1920s originated almost entirely in the manufacturing sector (David and 

Wright, 2003; Field, 2011).  This surge in labour productivity in the manufacturing sector 

was common to all manufacturing industries and accounted for a substantial proportion of the 

increase in TFP observed in the first part of the interwar years.  If there is a productive sector 

where the effects of electricity as a GPT on productivity should be magnified and easily 

detectable it is likely to be manufacturing.  

To evaluate the hypothesis of a link between GPT and productivity growth we have 

built a new comparative data set of electricity diffusion in the manufacturing sector for the 

major industrial economies of the 20th Century – covering the US, the UK, France, Germany 

and Japan (the data is described fully in a Data Appendix to this paper)3. The selection of 

countries allows us to compare the experience of the US, as the technological leader, with the 

technologically ‘relatively backward’ economies of the early 20th Century. 

David and Wright (2003) focus on the considerable acceleration of productivity 

growth in the US in the 1920s and associate this with a substantial increase in labour 

productivity and a concurrent fall in capital intensity in the US manufacturing sector. They 

see the upsurge in labour productivity as a direct result of the diffusion of electricity-based 

GPTs in production, and of the supply shock to the labour market caused by increasing 

restrictions on mass-immigration.  Although David and Wright also consider the experience 

of Britain and Japan, they rely on a descriptive analysis of the diffusion of electricity in the 

manufacturing sectors for these economies4.  

To date the literature on the effect of electricity diffusion on aggregate output has 

mostly been based on a descriptive evaluation of historical productivity data. For example, 

David and Wright (2003) use Kendrick’s productivity data to show the existence of a high 

growth phase in the 1920s. Jovanovic and Rousseau (2005) use ocular inspection of a 

Hodrick-Prescott trend of growth rates in output per man-hour to justify evidence of a 

                                                 
3 This is available from the authors. 
4 This leads David and Wright (2003, pp. 147-55) to argue that the use of electricity in manufacturing in Japan 
and Britain matched that of the US by the 1930s with similar productivity surges, suggesting that follower 
countries can accelerate the benefits of using the new technology. We show below that the quantitative evidence 
suggests that the US maintained its leadership position throughout the interwar period, even though Britain and 
Japan were diffusing the use of electricity in manufacturing rapidly in the interwar period. 
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productivity bonus. Our aim is to use time series techniques to describe the trend movements 

of economic growth as a way of avoiding selection bias. 

        

 
 
2. MEASURING THE ADOPTION OF ELECTRICITY IN THE MANUFACTURING 
SECTOR 
The traditional indicator of the extent of electrification of production has been the capacity of 

primary electric motors.  These are motors driven by electricity purchased from utilities and, 

therefore, not produced within the plant.  An indicator of the extent of electrification of 

production in the manufacturing sector that is directly linked to labour productivity is the 

capacity (in HP) of primary electric motors per employee.  Data on primary electric capacity 

is relatively easy to find, but it should be noted that such an indicator has serious drawbacks 

as a means of thinking about the effects of the electrification of production methods.  Electric 

motors were not necessarily employed at the same rate across countries because of 

differences at the national level in the number and length of shifts over which industrial 

machinery is operated in one day.  Moreover, the existence of secondary electric motors 

(those run on electricity produced within the industrial establishment), introduces a further 

element of confusion in the comparative exercise. A better and more direct way to assess the 

comparative contribution of the electrification of manufacturing processes to the growth of 

productivity is to use measures of electricity consumption per worker in the manufacturing 

sector.  The total electricity consumed by the US manufacturing sector in GWh is available in 

the Department of Commerce (1975, series D130). From this and from the data on 

employment in the manufacturing sector (Kendrick, 1961) we have obtained the observations 

on the electricity consumed per employee in the US manufacturing sector that appear in 

Figure 1. 

In order to be able to make international comparisons with the experience of the US 

we have constructed a similar data set for the total electricity consumed per employee in the 

UK, French, German and Japanese manufacturing sectors. A comparison of the consumption 

of electricity per employee in the manufacturing sector in these five countries is presented in 

Figure 1. This confirms that the adoption of electrical technologies in production was 

markedly delayed in the European core countries and Japan as compared to the US. The 

electricity consumed by each employee in the US manufacturing sector remained three times 

as high as that consumed by his/her European counterpart for much of the period, and fell 

below this threshold only in the last part of the 1930s Great Depression. 
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Two key conclusions emerge from this new comparative data set. First, it is clear that the use 

of electricity in the manufacturing sector was far more extensive in the US than in the other 

major economies of the inter-war period. The lag between the leader and followers suggests 

that by the early 1920s the other economies had a comparable usage of electricity in 

manufacturing to that of the US around 1907. By the mid-1930s the follower countries had a 

comparable usage to the US in 1920. This result differs from the description of the diffusion 

of electricity in follower countries during the interwar period by David and Wright (2003) 
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who claim that “...by the end of the 1930s the extent of diffusion of electric power in British 

manufacturing as a whole essentially matched that in the US.”5 

The quantitative comparative evidence suggests that the US managed to use more 

electricity per worker earlier than other countries and was able to sustain this lead even when 

other countries were making significant strides in diffusion in the inter-war period.   The reason 

for the US lead in the use of electricity per worker is related to the rich resource endowment 

of the US, resulting in the relative cheapness of electricity.  This in turn was due to the 

relative cheapness of thermal generation in the US, owing to the low price of the natural 

resources (oil and coal) employed.  This hypothesis can be evaluated using census data for 

Britain and the US.  In 1935 the British manufacturing sector was reported to have bought 

7,100 GWh of electric energy at a cost of £ 23,570, 000.  This meant that the average cost of a 

KWh for the British manufacturer was £ 0.00332 or 0.80d of the time.6  At the prevailing 

exchange rate of $ 4.971 per pound (Mitchell 1988, p. 703) in 1935 the price of a KWh 

bought by the average British manufacturer was equal to $ 0.0165.  As a term of comparison 

we observe that in 1929 and 1937 the average price paid by US manufacturers to acquire a 

KWh was $ 0.0127, and $ 0.0102 respectively.7  This suggests that the price of electricity 

paid by British manufacturers in 1935 was ca. 50 per cent higher than that paid by their US 

counterparts.  Given the strict correlation between the cost of electricity and the cost of its 

direct substitutes (coal, oil, etc.), this price differential indicates that sources of power in 

general were considerably cheaper in the US than in the UK.  In turn, this should be a strong 

indication of the energy intensive nature of production in the US, provided that one takes the 

not entirely unreasonable view that other production inputs such as capital and labour were 

not substantially cheaper in the US than in the UK (Broadberry, 1997, p. 101).  Indeed, there 

is strong evidence to suggest that the cost of labour relative to the cost of electric energy in 

manufacturing was at least twice as high in the US than in the UK, France, Germany and 

Japan for the duration of the second quarter of the twentieth century (Broadberry 1997, Table 

                                                 
5 David and Wright, 2003, pp. 149-50. As pointed out in Section 4 below, one way to reconcile this view with 
the evidence is that the use of electricity in the UK and Japan suggests a widening of use but the intensity and 
extent of use (measured as electricity per worker) was relatively low compared to the USA. 
6 Our calculation is made on the basis of the individual industry cost returns of the 1935 UK census of 
production.  The original figures refer to electricity purchased and used, including electricity generated in other 
works under the same ownership. 
7 Our calculations are based on data from the 1939 US census of manufactures.  Note that the data on the US 
KWh cost in manufacturing given by Broadberry 1997 in Table 7.5 p. 101 is mistakenly expressed in pence, 
while it should be expressed in US cents (see Melman 1956, p. 206).  Also note that the Melman’s calculations 
based on the electricity price paid by large manufacturers are very close to our calculations based on the more 
comprehensive census returns in the US case, and are substantially lower than for the UK (0.69d as opposed to 
our 0.80d).   
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7.5, p. 101 and Melman 1956, p. 206 and 213).  We can only agree with Broadberry’s 

remarks on the likely continuation of the effect of energy endowments on comparative labour 

productivity in the rest of the century (Broadberry 1997, p. 102).8   

The second key feature of the new data set is that the major European economies 

shared a common experience in the adoption of electricity in the manufacturing sector, 

despite their differing stages of development and per capita income (Japan shared a similar 

trend from a lower level of electricity per worker). This common path of electricity adoption 

by the European countries provides an opportunity to evaluate whether any productivity 

effects also follow common movements.  

 

3. A PRODUCTIVITY-BONUS FROM ELECTRICITY USAGE? TIME SERIES 
EVIDENCE 
David and Wright (2003) see the upsurge in labour productivity growth in the USA during 

the 1920s as a direct lagged result of the diffusion of electricity-based General Purpose 

Technology in manufacturing production. This explanation for US economic growth in the 

1920s is seen as a first approximation as they also stress the importance of other variables. To 

illustrate the extent of trend acceleration they use Kendrick’s manufacturing sector 

productivity data to show the existence of a low growth phase during 1889-1913, compared 

to the 1920s. For most of the 1920s the rate of growth of labour productivity was clearly 

high, averaging 5 per cent per annum during 1920-29. Table 1 calculates the geometric 

growth rates for a number of long period comparisons.  US labour productivity growth before 

1913 displays as a series of long swings (Abramovitz 1961; 1968), representing periods of 

accelerated and retarded economic growth.  The acceleration of growth rates observed during 

1900-1913 relative to 1889-1900 is mainly cyclical in nature, comparable in magnitude to the 

acceleration of the 1880s. 

 
 

                                                 
8 Abramovitz and David (2000, pp. 50-53) stress the fundamental importance of natural resource abundance in 
shaping the form, rate, and underlying technologies of US growth up to the first quarter of the twentieth century.  
They also maintain that natural resource abundance continued to play an important role in US growth in the rest 
of the century.  In a similar fashion Wright (1990, p. 651) notes that  ‘ … the single most robust characteristic of 
American manufacturing exports was intensity in nonreproducible natural resources.  In fact, their relative 
resource intensity was increasing over the half-century prior to the Great Depression.’  Resource abundance 
characterises US industry as a whole in the last two centuries, and it is a necessary condition for many of the 
distinctively American industrial developments in this period (ibid. p. 653, and p. 661). 
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Table 1: Labour Productivity Growth in US manufacturing  (per cent growth per 
annum) 

 

 GROWTH RATE 

1869-1879 0.72 

1879-18899 2.20 

1889-1900 0.85 

1900-1913 1.89 

 

Clearly the 5 per cent growth rate observed in the 1920s is historically unprecedented even if 

compared only to high growth episodes in the past. This interpretation of US economic 

growth is supported by other research. Harrison and Weder (2009) stress the very high total 

factor productivity growth of the 1920s as evidence of a supply-side technology based 

explanation of high US economic growth. Although Field (2011) raises some doubts about 

the idea of GPT he agrees with the productivity bonus effects of electricity use in 

manufacturing during the 1920s.  

To assess the magnitude of the productivity bonus we focus on describing the trend 

movements in labour productivity growth using a number of time-series techniques. 

Economic historians have described the cyclical path of the US economy before World War 

II as displaying a number of cycles of differing durations. The average period of the long 

swing fluctuations was around the 20-year frequency10. To analyse the extent of trend 

acceleration we use two models of time series decomposition that are able to deal with this 

cyclical structure (both methods are outlined in detail in the technical Appendix). First, we 

use the unobserved components time series model of Harvey (1989) to describe the trend in 

labour productivity once we model a short business cycle and a long-swing in the data. 

Although such a time-series structural model has the limitation of imposing a specific structure 

upon the data, it has the advantage of  nesting two extreme specifications for the trend, the 

deterministic or trend-stationary model and the stochastic trend or `difference stationary' model.  

We also use the wavelet methodology to decompose labour productivity data into 

“approximations” and “details”: approximations capture the high-scale, low-frequency 

(trend) components of the data; and the details are the low-scale (cyclical) components. The 
                                                 
9 The pre-1889 data are based on the benchmark years of 1869, 1879 and 1889. 
10 Jones and Olken (2005) have described this feature of modern economic growth as “Start-Stop Growth”, 
entailing large swings of growth within twenty-year intervals. Comin and Gertler (2006) have emphasised the 
importance of “medium-term business cycles”. Although both these studies focus on the US experience after 
World War II, the pre WWII period displayed similar growth features. 



 12 

major advantage of the wavelet method is that the non-parametric nature of the 

decomposition is able to capture the irregular nature of the period and amplitude of economic 

cycles and captures cyclical processes of different durations. The trend in the US labour 

productivity that results from these time-series models is depicted in Figure 2. Both 

decomposition methods yield similar trend lines; the proportional differences between the 

two trend lines mainly range around two per cent. 

Another filter that is widely used in business cycle discussions is the Hodrick–

Prescott filter. We use the trend estimate obtained with this filter as a robustness check on the 

trend descriptions that arise from our other two models (Unobserved Components, and 

Wavelet Methodology). Clearly, as is well known, the H-P filter retains much of the low 

frequency cyclical movements in the data within the trend component which explains the 

more cyclical-looking trend line. For the wavelet method and the Kalman filter structural 

model these low frequency movements have been explicitly decomposed in the trend-cycle 

decomposition. Hence, although the different filters display differences regarding the cyclical 

movements of the economy they all agree that the trend component of US labour productivity 

displays non-linear process with some trend-acceleration observed in the interwar period 

relative to the past. The movements of labour productivity in the manufacturing sector 

suggests that a productivity bonus is observed in the interwar period but the trend 

improvement is relatively mild compared to the large swings of growth observed in the 1920s 

and 1930s. Hence, there is evidence of a productivity bonus in two forms:  first, there is some 

trend acceleration in the trend component of productivity growth11; second, the much higher 

cyclical volatility of the interwar data generated a high amplitude long swing in productivity 

during the 1920s and 1930s. 

                                                 
11 As argued by Field (2011) it is important to consider the trend estimate for the USA up to the period 1941-2 if 
we are to get a sense of the longer term trend movements of the USA. Hence Figure 2 for the USA is displayed 
over a slightly longer period than the figures for the other countries which end in the 1930s. 
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Figure 3 plots British manufacturing sector labour productivity together with the trend 

estimates from the structural time series model, the wavelet model and H-P filter. All three 
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estimates of the trend performance of productivity in the manufacturing sector are agreed on 

the broad picture; the trend displays segmentation in the interwar period with a period of 

trend acceleration in productivity growth.12 The major gain in manufacturing sector 

productivity growth begins in the 1920s and maintains momentum into the 1930s. Since the 

UK manufacturing sector productivity bonus is observed over the inter-war period as a whole 

this raises doubts about the ability of GPT theory to rationalise these trends as the UK began 

the 1920s well below the US in its level of electricity per worker.  In light of the evidence for 

the diffusion of electricity usage in British manufacturing, it seems reasonable to conclude 

that the British manufacturing sector was also able to enjoy significant productivity gains 

from the adoption of electricity in manufacturing during the interwar period but that these 

effects on productivity came to fruition much more rapidly than implied by GPT theory. 

This description of the trend performance of British industry differs from some 

existing analyses of inter-war growth trends. Greasley and Oxley (1996) describe a 

significant segmentation of the trend path of industrial output that was negative following the 

adverse shocks observed in 1920-1. The results presented above for manufacturing sector 

productivity suggest the opposite view is consistent with the evidence13, with productivity 

growth making significant strides in the interwar period. Crafts (2011) has also postulated a 

pessimistic view on productivity growth, particularly for the 1930s. We find that the trend 

improvement in the manufacturing/industrial sector is a feature of the inter-war period as a 

whole. Crafts’ thesis is that the supply-side policy framework of the 1930s was not conducive 

to rapid productivity growth.  If this hypothesis is correct, then other variables must have had 

very large effects to compensate for this given the trend-acceleration path of industry-sector 

productivity. 

An index for Japanese manufacturing sector labour productivity has been constructed 

on the basis of the employment data contained in Umemura et al. (1988), and of the output of 

the Japanese manufacturing industry over the period 1896-1940 taken from the Japanese 

historical national accounts (LTES) 14.  Figure 4 displays Japan’s manufacturing sector labour 

                                                 
12 This feature of the growth process is observed with simple descriptive statistics- over the period 1920-38 the 
mean growth rate of labour productivity doubled relative to the pre-1913 period. 
13 The path of manufacturing sector output and industrial production in general move one for one, suggesting 
that the differences between our results and the description of Greasley and Oxley is not due to compositional 
effects. 
14 The data overlap in 1919 and 1920 allowing us to scale the pre-1919 series to be comparable to the interwar 
series. The employment data were estimated on the basis of annual surveys of establishment with more than 
nine employees before 1919, of establishments with more than four employees for the period 1919 – 1937, and 
for all establishments from 1938 onwards.  The extrapolation for the smaller establishments before 1938 and the 
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productivity: the growth rate averaged 1.72% per annum over the period 1896-1940 but 

labour productivity fluctuated significantly about trend.  The three trend estimates for Japan 

are also presented in Figure 4. The existence of large swings in productivity growth in Japan 

makes the identification of trend breaks more difficult. Nevertheless, all estimates capture 

some acceleration in the interwar period, although the specific timing differs.  

 
                                                                                                                                                        
coverage of the State-owned establishments were originally obtained using industrial census information and 
more comprehensive local surveys when available. 
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In the case of Germany the limited availability of annual data means that we cannot employ 

formal methods to derive an estimate of labour productivity trends. Instead we rely on 

descriptive statistics to build a picture from the available data.  Figure 5 plots labour 

productivity in the German manufacturing sector on a logarithmic scale using annual data 

over the period 1885-1938 (there are gaps in the data series over the trans-war period 1914-

24).  Some benchmarked data for the period 1875-1885 also exist and is included for 
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analysis. During the pre-1913 period labour productivity growth averaged 2.1% per annum 

over the period 1886-1913. Although the manufacturing sector’s labour productivity growth 

rate over the inter-war period was higher - the growth rate of 1925-38 averaged 2.81% per 

annum, given the greater variance of interwar growth rates this difference in growth was not 

large enough to stand out as statistically significant.  Hence, the productivity bonus observed 

in the USA, UK and Japan is absent in the case of Germany. 

 
In the case of France the availability of data to discuss pre-1914 trends is limited. Labour 

input data is available only for a few benchmarks observations between 1872 and 1911, 
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which limits us to drawing inferences on the underlying trend.15 The trend rate of growth of 

labour productivity growth in industry was below 1 per cent per annum during the period 

1872-1911. For the interwar period we were able to build an index of manufacturing sector 

labour productivity for the period 1921-38.16 This is presented in Figure 6. It is clear that 

during the 1920s labour productivity growth in French manufacturing displays high growth 

rates (representing a doubling of the pre-1911 trend growth rate). However, with the onset of 

depression in the 1930s, France enters a phase of stagnant productivity growth which extends 

throughout the lost decade of the 1930s. Summarising, whilst a productivity bonus is 

observed in the case of the USA, for the four remaining countries here considered things 

seem more complex.  Although the UK, Japan, Germany and France share a common path of 

electricity diffusion in the manufacturing sector, their productivity growth paths differ.  For 

Britain and Japan we observe trend acceleration spread out over the interwar period; for 

France productivity growth accelerates in the 1920s and stagnates in the 1930s; for Germany 

there is no trend acceleration. In light of these case studies the relationship between 

electricity as a GPT and productivity growth does not fit the stylized facts often found in the 

GPT literature, even as a first approximation to the growth process. This mixed comparative 

evidence should also act as a warning against seeing electricity as a GPT driving US 

economic growth over the interwar period.17  

 
 

4.  ELECTRICITY DIFFUSION AND PRODUCTIVITY: DISAGGREGATED 
EVIDENCE FOR THE UK IN THE 1930S. 
 

Electrification is often seen as a GPT because its effects are seen to be pervasive in a 

multitude of industries. A GPT is seen as a yeast-like process that works itself across all 

industries. The disaggregated evidence for the USA reported in David and Wright (2003) 

suggests that this feature is important in understanding the productivity bonus of the 1920s.  

The data contained in the 5th Census of Production of the UK for the year 1935 allows us to 

observe electricity diffusion and productivity growth for another important case study.  The 

                                                 
15 Benchmark observations exist for 1872, 1876,1881,1886, 1891, 1901, 1906 and 1911. We thank Jean-Pierre 
Dormois for providing us with the available French labour productivity data. 
16 Using the labour input calculations for the manufacturing sector and assuming that the trends in industrial 
production display significant co-movements with those for the manufacturing sector. 
17 Field (2011) notes that whilst electricity may have been important to the productivity acceleration in US 
manufacturing during the 1920s a broader set of innovations determined productivity growth over the interwar 
period as a whole. 
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Census describes 108 main sectors in manufacturing.18  In particular, Tables I.A, and IX 

detail employment, total consumption of electricity and net output at current prices, by the 

factories with more than 10 workers falling in each industrial category. Net output at current 

prices, has been traditionally transformed into net output at constant 1935 prices using price 

information from the censual data.  Data availability for electricity consumption relates to 

two observation points, one in 1930 and the other in 1935. The data confirms that electricity 

is quickly diffusing in this period.  There are only 11 sectors out of 108 in which the increase 

in electricity consumption is lower than the growth in labour input.19  Similarly in more than 

two thirds of industries (79 out of 108) the increase in electricity consumption is above that in 

net output. The march of electrification in UK production seems nearly ubiquitous in the 

early 1930s. This confirms that electricity was diffusing extensively in British manufacturing 

during the 1930s and allows us to evaluate whether there is a marked positive correlation 

between growth in electricity consumption per worker and labour productivity as postulated 

by David and Wright for the American case (2003).  

David and Wright’s case that electricity diffusion would affect growth by markedly 

increasing labour productivity appears more tenuous for the British case.  Columns 5 and 6 in 

Table A.1 in the appendix provide the rate of growth of labour productivity and of the 

consumption of electric energy per worker in the 108 sectors between 1930 and 1935.  The 

correlation between these two is positive but weak  (r = 0.22)20.  These results suggest that 

the mechanism posited by David and Wright (2003), according to which the diffusion of 

electricity allowed for marked increases in labour productivity, was not at work in the British 

industry in the early 1930s.   

 If in this case electricity diffusion seems to be weakly correlated with increases in 

labour productivity it could be possible that it affected capital productivity and Total Factor 

Productivity.  Unfortunately the 1935 UK Census of Production does not include independent 

observation on capital stocks.  It is thus impossible to embark on a standard exercise in 
                                                 
18  The 1935 Census of Production covers also industries from the mining, and building industries and 
production under State and local authority ownership.  Given that the focus of our investigation is the 
manufacturing industry we have dropped these additional sectors.  Moreover, the Census gives separate readings 
for net output and employment for two sectors: “Iron and Steel (Blast furnaces)”; and “Iron and Steel (Smelting 
and Rolling)”.  Yet, it amalgamates them into a single sector called “Iron and Steel (Blast furnaces and Smelting 
and Rolling)” when it comes to electricity consumption.  Therefore we conflated also the data on output and 
employment for these sector into figures for “Iron and Steel (Blast furnaces and Smelting and Rolling)”.  
19 They are: (1) Packing; (2) Umbrella and Walking Stick; (3) Shipbuilding; (4) Railway Carriage and Wagon 
Building; (5) Carriage, Cart and Wagon; (6) Fish Curing; (7) Petroleum; (8) Manufactured Fuel; and (9) Musical 
Instruments; (10) Sports Requisites; and (11) Coopering.  
20 The correlation between labour productivity increase (column 5) and the growth in electricity consumption 
(column 4) is weaker (r = 0.15).   
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growth accounting.  Nevertheless we can use that framework to investigate whether 

electricity consumption affected a combination of capital input and TFP.  Let us write a basic 

growth accounting equivalence in the following form: 

(1)              Δ𝑌
Y

= 𝛼 Δ𝐾
K

+ 𝛽 Δ𝐿
L

+ 𝛾 Δ𝐸
E

+ 𝑇𝐹𝑃 
 

Where:   
Δ𝑌
Y

    is output growth;   
Δ𝐾
K

 is capital input growth; 
Δ𝐿
L

 is labour input growth;  
Δ𝐸
E

  is 

increase in electricity consumption; TFP is the total factor productivity and α, β, and γ are 

non-negative constants with α + β + γ = 1.  
Δ𝐾
K

 can be interpreted as investments not related 

to electricity.  In line with conventional assumptions (see for example Harrison and Weder 

2009, p. 366, or Field,  2011, p. 6) we set β = 0.7.  This parameter is also consistent with the 

estimates of factor shares from Matthews et al. (1982) for the interwar UK economy. There 

are obvious caveats that apply to any standard Cobb Douglas type growth accounting 

exercise.  Nevertheless this framework can be helpful in allowing us to summarize the 

implications of the data.  In our case we do not observe 
Δ𝐾
K

 therefore we set: 

(2)             𝛼 Δ𝐾
K

+ 𝑇𝐹𝑃 =  𝜓  

A little manipulation yields for each of the 108 manufacturing sectors:   

(3)           𝜓𝑖 = Δ𝑌i
Yi
− 0.7 Δ𝐿i

Li
− 𝛾Δ𝐸i

Ei
                 where (𝑖 = 1, . . . ,108). 

This relationship allows us to investigate whether there is a strong positive correlation 

between large increases in the consumption of electricity and large residuals 𝜓𝑖 .  In order to 

calculate 𝜓𝑖  we need to set a value for γ.  The objective is that of providing an upper-bound 

estimation for the residual (which is a sum of the capital input and of TFP).  In order to do so 

we need to dampen the adverse effect that a fast growth in electricity consumption in sector i 

would have on the residual in that sector by setting a low value for γ.  We opt for a value of 

0.1.  Hence (3) becomes:   

(4)           𝜓𝑖 = Δ𝑌i
Yi
− 0.7 Δ𝐿i

Li
− 0.1 Δ𝐸i

Ei
 

This allows us to calculate a residual 𝜓𝑖 for each sector (Column 7 in Table A.1 in appendix). 

Again we find a mild positive correlation (r = 0.57) between growth in the consumption of 
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electricity on one side and the combined effect of TFP and weighted investments on the 

other.   

Clearly neither of these calculations provides a good approximation, let alone an 

actual measure, of the correlation between electricity diffusion and TFP.  The problem arises 

from the high likelihood of a strong correlation between investment activity and electricity 

consumption. We know that in this period new production capital was very likely to embody 

new electricity-related technology.  It is thus very likely that a considerable part of the 

observed correlation between electricity consumption and the residual 𝜓𝑖 is simply the result 

of the fact that increased consumption of electricity would require increased investments.  To 

get a better sense of the relationship between electricity diffusion and TFP we must try to 

disentangle TFP from capital growth.  A way to think around this problem is to assume that 

there would be no increase in electricity consumption without new investments in electricity-

embodying capital, and there would be no investments in new productive capital that is 

devoid of an electricity component.  Under this common, but somewhat arbitrary assumption 

the growth in electricity consumption comes also to represent growth in investments  (αi = 0;  

βi = 0.7; γi = 0.3 ) then we obtain the residual in column 9 of Table A.1 in appendix21.  This 

approximation yields  a weaker correlation (r = 0.39) which is probably a closer indicator of 

the actual correlation between electricity consumption and TFP.    

The conclusion of this exercise is that, at this level of disaggregation (108 industrial 

sectors), in the UK, during the early 1930s, the effect of electricity diffusion on labour 

productivity growth is weak.  Although the effect of electricity diffusion on a combined 

measure of Total Factor Productivity and growth of capital input is stronger than for labour 

productivity this is likely to be due in considerable measure to the strong correlation between 

investment activity and growth in electricity use.  Without independent data on investment 

dynamics it is difficult to estimate the true TFP component of disaggregated growth. A rough 

approximation yields only a moderate correlation between electricity diffusion and sectoral 

TFP. 

 

    

5.  CONCLUDING REMARKS 

Our examination of the relationship between electricity usage in manufacturing and 

productivity bonus in the manufacturing sector suggests that whilst a productivity bonus is 
                                                 
21 Note that this is the implicit assumption commonly adopted in using HP increase as a proxy for investment in 
the 1930s, as in this period most of the increase in HP capacity is to do with new electrical installations. 
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observed in the case of the USA, for the four remaining countries here considered things 

seem more complex.  Although the UK, Japan, Germany and France share a common path of 

electricity diffusion in the manufacturing sector, we observe heterogeneity in growth effects 

among them.  For Britain, and to a lesser extent Japan, we observe trend acceleration spread 

out over the interwar period. As noted above, the similarity of trend acceleration in Britain 

and the USA in the 1920s is difficult to reconcile with a GPT perspective given the relative 

backwardness of the UK in the electricity diffusion process. Similarly, a GPT approach does 

not explain why, given a similar process of electricity diffusion the productivity path of the 

UK should differ so much from that of France where productivity growth accelerated only in 

1920s but stagnated in the 1930s, and from that of Germany where there was no trend 

acceleration at all. In light of these case studies the relationship between electricity diffusion 

and productivity growth in manufacturing needs to be far more nuanced than is suggested by 

the stylized facts often found in the GPT literature. Clearly if GPT theory is meant as a first 

approximation to the growth process, there are potent second approximation effects capable 

of muddling and possibly obscuring any link between electricity usage and economic growth. 

Put it differently, the heterogeneity of growth movements in the major industrial countries of 

the 20th Century suggests that the role of technology diffusion can only be one of a number of 

important variables determining growth outcomes. The GPT literature has sought to find a 

link between technological innovation and growth by looking for evidence of trend 

acceleration in the time-scale of decades. However, it is clear that even within this timescale 

the determinants of productivity growth are not just technological. In our case the 

heterogeneity of the productivity paths of industrial countries may be explicable within a 

technological and a policy perspective. For example, France was able to gain a productivity 

bonus in the 1920s but was unable to do so in the 1930s under its membership of the Gold 

Bloc. Similarly although Germany was clearly diffusing electricity usage as fast as other 

countries the potential growth bonus was moderated by a sequence of adverse effects both in 

the 1920s and the 1930s.  

Moreover, our investigation of the disaggregated effects of electricity diffusion 

among British industries in the early 1930s sounds further notes of caution over the heuristic 

power of GPT theory.  We find that, although electricity was diffusing rapidly across British 

industries, the effect of electricity diffusion on labour productivity growth is weak. 

Finally, our study of electricity as a GPT can be used in conjunction with other case 

studies to build a broader picture of GPTs and economic growth. Crafts and Mills (2004) 

examined the case of steam as a GPT in the 19th Century and found no evidence to support 
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the macroeconomic hypotheses of the GPT framework when trying to explain British 19th- 

century economic growth. The failure of GPT theory to account for 20th Century growth 

suggests that caution is needed before we use GPT theory to explain historical economic 

growth. The bottom line is that the simplicity of GPT theory makes it an appealing theory of 

episodic growth but its simplicity is also its major weakness as a tool to investigate historical 

economic growth. Our analysis thus confirms the growing doubts about the usefulness of the 

concept of GPT.   As Field observes, the GPT theory fails to unequivocally individuate more 

than three historical examples: steam, electricity, and ICT.  Of these at least one (steam) is 

unlikely to have had much of a detectable effect on growth. The productivity bonuses 

associated with it seem to have taken such an inordinate amount of time to materialise (a 

century and a half after Newcomen’s original invention) as to be quantitatively 

indistinguishable from the growth effects of a multitude of other technological changes of the 

19th century.  Our evidence on electricity supports the conclusions of Crafts and Mills (2004) 

that “the newfound enthusiasm for General Purpose Technology models of long run growth 

processes should not be taken too far”.  

The historical case studies of steam and electricity raise the broader question of 

whether GPT theory can be a theory of macroeconomic growth – the inability of GPT theory 

to account for the historical record of growth raises strong doubts.  What are we left with?  

With a theory that suggests that GPTs are pervasive technological changes (of which there 

are few agreed examples), that might or might not produce productivity accelerations. Being 

pervasive they are more likely than other technological changes to produce effects at the 

macro level but there are also many examples of less pervasive technological changes that are 

equally transformational.  Presumably less pervasive technologies could have big effects on 

aggregate productivity if their effects on the productivity of the few sectors affected are of a 

truly substantial magnitude (depth of the effect), and/or if their introduction is comparatively 

fast and easy (the speed of the diffusion process). So we are back to the old truism that big 

technological changes are going to produce noticeable effects on growth and productivity 

trends.  In summary, we might need to demote GPT theory to a specific case of a more 

general and mundane relationship between technology and long-term growth according to 

which a big (not necessarily a pervasive) technological change will have big effects.  If it was 

a small technological change it would be likely to have small effects.  This is hardly news and 
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hardly a theory and more in the realm of what the French would describe as a lapalissade.22 

Alternatively, GPT theory might be understood as suggesting that a GPT is, in fact, 

technological change that has all the characteristics of width (generality of diffusion), depth 

(substantial effects in terms of productivity) and speed (ease of diffusion).  Being big, it 

would have big and detectable effects on long-term aggregate productivity.  Unfortunately, 

should we accept this interpretation of GPT, we would find that there are no historical 

examples of such a transformative technology.  The theory thus would be one that describes 

something that has never happened in the past.  It is left to the reader to decide how useful an 

economic theory can be if it describes something that, albeit never experienced in the past,  

might, or might not, happen in the future.        
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APPENDIX 
 
WAVELET TREND-CYCLE DECOMPOSITION23 
Until recently the windowed Fourier transform (WFT) was the standard method used to 

detect cyclical components of time series in the frequency domain. The basic idea of the 

WFT is to break a time series into segments with a selected window function.  The Fourier 

transform is applied to each segment separately.24 The WFT produces a sequence of ‘local’ 

spectrums of the time series x(t) along the time dimension. To assume stationarity and 

enhance the time information, one must use a short segment (window), which results in a 

poor frequency resolution. If one uses a long segment (window), frequency resolution 

improves to the detriment of time resolution, since it is difficult to know what frequencies 

occur at which time intervals.  Clearly a major drawback of the WFT is that it uses a fixed 

window width to analyze economic time-series that display cycles of low and high 

frequencies and time-varying features.25 

The wavelet transform is a new non-parametric method of decomposing nonstationary 

time series, which solves some of the problems of the windowed Fourier method. The 

wavelet transform uses a two-parameter family of function: time location (translation) 

parameter τ and scale parameter λ,   
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where ψ*(.) is the complex conjugation of the wavelet function ψ[(t-τ)/λ], the basis function 

in the wavelet transform.  Wavelet algorithms process data at different scales or resolutions.  

The wavelet is dilated or compressed to extract frequency information from a time-series x(t).  

The extent of dilation or compression is determined by the scale parameter λ, which is 

inversely related to the frequency of the wavelet.26  Thus, in the wavelet transform, each 

frequency component is analyzed with a resolution appropriate for its scale.27  

                                                 
23 We would like to thank Weike Wu with helping us with this Appendix on wavelets. 
24 The windowing is accomplished via a weight function that places less emphasis on data near the interval's 
endpoints. 
25 Clearly this problem is highly relevant to long-run data analysis, when such changes are more likely to occur. 
26 This is similar to sinusoids.  For example, the effect of the scale factor a in sine is: 

f(t) = sin(t) ; a = 1 
f(t) = sin(2t) ; a = 1/2 
f(t) = sin(4t) ; a = 1/4 

Thus, for a sinusoid sin(ωt), the scale factor a is inversely related to the frequency ω. 
27 Because the wavelet is scaled by λ, wavelet analysis is often called a time-scale analysis rather than a time-
frequency analysis.   
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To extract time information, the wavelet transform is computed for each value of the 

scale parameter λ at different time location τ, similar to the WFT, from beginning to end of 

the signal x(t).  In contrast to the WFT, however, the window width of wavelet transform 

varies with frequency: the wavelet transform uses short windows at high frequencies and long 

windows at low frequencies. Thus, the difficult problem of determining an optimum window 

width is avoided. 

Whilst the Fourier transform has a single set of basis functions, sines and cosines, the 

wavelet transforms have an infinite set of possible basis functions.  The wavelet ψ(t) is 

defined to satisfy the following properties: 1) it integrates to 0, which ensures that ψ(t) is 

wave like, allowing us to extract frequency components around the trend. 2) It decays 

sufficiently fast and lasts through a finite period of time or space, in contrast to sine and 

cosine in Fourier transform, allowing us to obtain localisation in time. 

Given a wavelet ψ(t), the corresponding scaling function φ(t) can be defined to satisfy 

the following properties : 1) it integrates to 1, i.e. the scaling function is an averaging 

function; 2) it is normalised to have unit norm; 3) it is orthogonal to all corresponding 

wavelets; 4) it is orthogonal to its discrete translations; 5) at some scale, it can be obtained as 

a linear combination of itself at the next scale;  6) the wavelet can be obtained as a linear 

combination of dilates and translates of the scaling function. Thus, a pair of corresponding 

scaling function φ and wavelet function ψ can be used to represent the smooth trend (low-

frequency) part and the detailed (high frequency) part of a signal respectively. 

In calculating wavelet coefficients one approach is to use the so-called dyadic scales 

and time locations (translations): λ = 2j and  τ = 2jk, where j and k are integers.  Working with 

this discrete wavelet transform (DWT) gives efficient estimates, without loss of accuracy. 

The scaling function and wavelet function are given as: 
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As j (and scale parameter 2j) increases, the function φj,k  and ψj,k get shorter, whereas the 

translation step (i.e. 2Jk) gets larger. Thus, time-frequency/scale resolution is not constant but 

varies with frequency. 

There are several types of wavelet functions available. The choice of the wavelet function 

to be used depends on the application, which requires a trade-off between properties such as 
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smoothness, temporal location, frequency location, symmetry and orthogonality.  The Haar, 

Daubechies, Coiflets and Symlet are four examples of wavelets:   

1) The Haar wavelet is the first wavelet, proposed in the 1930s.  It is a square wavelet. If 

a process exhibits discontinuous jumps, the Haar wavelet may be best suited for 

describing this behaviour.  For studies of business cycles, however, the Haar wavelet 

is not appropriate, given the discontinuous nature of its waveform, which has poor 

allocation in frequency. 

2) Daubechies is the most used family of wavelets. This is nearly symmetric and when 

the scaling function has the same number of coefficients as the wavelet function, it is 

orthogonal; otherwise, it is biorthogonal.28  Daubechies’ original paper shows that this 

wavelet is good for representing polynomial behaviour.   

3) Coiflet is more symmetrical than the Daubechies wavelet. Whereas Daubechies 

wavelet has vanishing moments for the wavelet functions but not for the 

corresponding scaling functions, Coiflet has vanishing moments for both. 

4) Except for the Haar system, no system of wavelet function and corresponding scaling 

function can be at the same time compactly supported29 and symmetric. Nevertheless, 

for practical purposes (in image processing for example), one can try to be as close as 

possible.   Symmlet is a result of this kind of effort. 

 
Within each family of wavelets (such as the Daubechies family), wavelets are often classified 

by the number of vanishing moments, a stringent mathematical definition related to the 

number of nonzero coefficients, e.g. Daubechies 4, Daubechies 6, etc. With more nonzero 

wavelet coefficients, the functions become smoother, resulting in better frequency location 

but poorer time location.   

Wavelets use a multiresolution decomposition (MRD) method. This means that a 

given time series x(t), with finite variance, can be decomposed into different approximations 

at different scales.  At the first level, x(t) can be decomposed into two components: S1 is the 

(smoothed) approximation of x(t) taking into account the low frequencies of the signal and its 

resolution is half of x(t), whereas the detail D1 corresponds to the high frequency details of 

                                                 
28 Classical wavelets require the filters to be orthogonal across both translation and scale, which gives a clean, 
robust system.  In this case, however, the wavelet and scaling functions must have the same length and the 
length must be even.  These restrictions prevent linear phase analysis, which is crucial in image processing.  
Biorthogonal wavelet is the result of relaxing the restriction of orthogonality. 
29 If a wavelet/scaling function vanishes outside of a finite interval, it has compact support, which is useful for 
local analysis. 



 32 

x(t) that are not in S1.  The decomposition process can be implemented recursively at 

different scales, i.e. successive approximations being decomposed in turn, so that x(t) is 

broken down into many lower resolution components (e.g. x(t) split into S1 and D1; S1 split 

into S2 and D2; S2 split into S3 and D3; …).  MRD produces a family of hierarchically 

organized decompositions.  In theory, the decomposition process can be iterated until the 

individual details consist of a single sample or pixel.  In practice, the level chosen is based on 

a desired low-pass cut-off frequency. The detail component Dj is the discrepancy between 

two successive approximations Sj-1 and Sj.  As j increases, the resolution of Dj becomes 

poorer, which reflect the lower-frequency parts of the series. 

x(t) ≈ SJ(t) + DJ(t) + DJ-1(t) + … + D1(t)    (4) 

where J is the number of multi-resolution components or scales, and k ranges from 1 to the 

number of coefficients in the corresponding component.  Of those, SJ denotes cycles with 

periodicity greater that 2J+1 periods (the “trend”) and the Dj (j = 1, 2, …, J) captures cycles 

between 2j and 2j+1.  

Mallat (1985, 1989) verified relationships between quadrature mirror filters, 

hierarchical algorithms30 and orthonormal wavelet bases.  Following Mallat’s scheme, the 

approximation and details components in MRD are derived as, 

SJ(t) = ∑k sJ,k φJ,k(t)       (5) 

Dj(t) = ∑k dj,k ψJ,k(t)    j = 1, 2, …, J   (6) 

where  

• J is the number of multi-resolution components or scales, and k ranges from 1 to the 

number of coefficients in the corresponding component; 

• the functions φJ,k and ψj,k (j = 1, 2, …, J) are the approximating scaling functions and 

wavelet functions respectively 

• the sJ,k are called the smooth coefficients and the dj,k are called the detail coefficients, 

which represent the smooth trend of the data at the coarsest scale and the deviations at 

scale j (j = 1, 2, …, J) respectively. With discrete wavelets, they can be approximated 

as:   
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30 This is also referred to as a pyramidal algorithm. 
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The number of coefficients at a given scale j is related to the width of the wavelet 

function. When the length of the data n is divisible by 2J, there are n/2j coefficients dj,k 

at scale j (j = 1, 2, …, J).  Similarly, at the coarsest scale, there are n/2J sJ,k 

coefficients31.   A strong output is given where the shape of x(t) is closely matched by 

the shape of the chosen wavelet. 

Thus, the multiresolution decomposition of expression (4) can be re-written as  

         x(t) ≈  ∑k sJ, 

 
KALMAN FILTER STRUCTURAL MODEL OF TIME SERIES DECOMPOSITION 
 
The  Kalman filter structural model of time series decomposition we use is based on the work of 

Harvey (1985, 1989): 

 
  yt t t t= + +µ ψ ε       (1) 

where  

 

  µ µ β ξt t t t= + +− − −1 1 1       (2) 
 
   β β νt t t= +−1        (3) 
 
ψ ρ λ ω ρ λ ω ρ λ ρt t tL L L L= − + − +( cos ) ( sin ) / ( cos )*1 1 2 2 2  
 
where µt stands for the trend component of yt; ξt allows the trend to shift up and down; νt 

accounts for shocks to the slope, βt; ψt captures the cyclical regularities in yt; L represents the 

lag operator; ωt represents the shocks to the cyclical component; εt accounts for short-term 

erratic movements and possible measurement errors in yt. εt, ξt, νt and ωt are assumed to be 

mutually independent white noise processes, with ωt
* arising by construction under the 

constraint that σ(ω) = σ(ω*); λ is the frequency of the cycle and ρ is the damping factor.  The 

existence of short (high frequency) and long (low frequency) cycles makes it necessary to 

model a number of cycles simultaneously. 

                                                 
31 In total, there are  n (∑j1/2j + 1/2J) = n  coefficients,  i.e. ∑jn/2j detail coefficients and 1/2J smooth coefficients. 
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 Maximum likelihood estimates of the unknown parameters σ (ξ), σ (v) , σ (ε), σ (ω)  and ρ 

can be obtained by the Kalman filter algorithm.  The latter implements a set of recursive 

equations from given initial values of the parameters, which are successively updated in the light 

of every new observation (Harvey, 1989). 

 The model allows ξ  and v  to vary over time, this allows for the possibility that the trend 

may be deterministic over sub-periods, while possessing a significant stochastic component over 

the entire period.  The model ultimately lets the data determine the shape of the trend and thus 

makes it possible to extract the cyclical component under a wide variety of possible trend 

specifications.  The main advantage of this framework is that we can focus both on the nature of 

trend variations and the patterns of low frequency fluctuations jointly and independent of sample 

selection biases. 
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Table A.1: UK industrial sectors from 1930 to 1935. 
Trade 
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ψ2,i 

 

 

 
(8) 

ψ3,i 

 

 

 
(9) 

Cotton Spinning and Doubling 0.25 0.04 0.08 0.31 0.13 0.21 0.22 0.20 
Cotton Weaving 0.12 0.12 0.36 0.27 0.54 0.01 0.03 0.07 
 Woollen and Worsted 0.47 -0.05 0.52 0.40 0.44 0.45 0.44 0.35 
Silk and Artificial Silk 1.24 -0.17 1.18 0.91 0.86 1.24 1.21 1.01 
 Linen and Hemp 0.15 0.03 0.29 0.16 0.34 0.10 0.11 0.04 
Jute 0.60 0.16 0.87 0.90 1.22 0.40 0.43 0.22 
Hosiery 0.53 -0.09 0.71 0.40 0.57 0.52 0.50 0.38 
Textile Finishing 0.13 0.05 0.20 0.19 0.26 0.08 0.09 0.04 
Lace 0.18 -0.05 0.36 0.13 0.30 0.18 0.17 0.11 
 Rope Twine, and Net 0.24 0.10 0.68 0.38 0.87 0.10 0.12 0.04 
Canvas Goods, and Sack  0.24 -0.15 0.32 0.08 0.15 0.31 0.29 0.25 
Asbestos Goods and Engine and 
Boiler Packing 0.37 -0.21 0.79 0.13 0.48 0.43 0.39 0.27 
 Flock and Rag 0.33 0.04 0.32 0.38 0.37 0.27 0.28 0.21 
Elastic Webbing 0.39 -0.13 0.81 0.23 0.60 0.40 0.38 0.24 
Coir Fibre, Horse-hair & Feather 0.19 -0.06 0.35 0.13 0.27 0.20 0.19 0.13 
Roofing Felts 0.33 -0.31 1.00 0.02 0.53 0.45 0.38 0.25 
Packing 0.03 0.08 -0.14 0.11 -0.07 -0.01 0.00 0.01 
Fellmongery 0.34 -0.03 0.31 0.29 0.27 0.33 0.32 0.26 
Leather (Tanning and Dressing) 0.26 -0.06 0.24 0.19 0.17 0.28 0.27 0.23 
Leather goods 0.19 -0.18 0.17 0.01 0.00 0.29 0.26 0.26 
Tailoring, Dressmaking, Millinery 
etc. 0.17 -0.12 0.64 0.04 0.46 0.19 0.17 0.07 
Boot and shoe 0.27 -0.01 0.21 0.27 0.20 0.26 0.25 0.21 
Hat and Cap 0.37 0.02 0.44 0.40 0.47 0.32 0.32 0.23 
Glove 0.46 -0.41 1.22 0.04 0.58 0.63 0.55 0.38 
Fur 0.80 -0.30 0.53 0.39 0.18 0.95 0.89 0.84 
Umbrella and walking Stick -0.09 0.24 -0.45 0.19 -0.28 -0.21 -0.16 0.12 
Iron and Steel (Blast furnaces and 
Smelting and Rolling) 0.45 0.03 0.49 0.44 0.53 0.38 0.38 0.28 
Iron and Steel Foundries 0.33 -0.20 0.61 0.11 0.34 0.41 0.37 0.29 
Tinplate -0.05 0.13 0.15 0.09 0.32 -0.16 -0.13 0.19 
Hardware, Hollow-ware, Metallic 
Furniture and Sheet Metal 0.34 -0.18 1.39 0.14 1.03 0.33 0.29 0.05 
Chain, Nail, Screw and 
Miscellaneous Forgings 0.16 -0.20 0.53 -0.04 0.27 0.24 0.20 0.14 
Wrought Iron and Steel Tube 0.42 -0.10 0.37 0.29 0.25 0.45 0.43 0.38 
Wire 0.56 -0.07 0.46 0.46 0.37 0.56 0.54 0.46 
Tool and Implement 0.52 -0.14 0.30 0.33 0.14 0.59 0.56 0.53 
Cutlery 0.97 -0.05 0.33 0.86 0.27 0.97 0.96 0.90 
Needle, Pin and Metal Smallwares 0.23 -0.32 0.76 -0.07 0.34 0.37 0.31 0.22 
Small Arms 0.21 -0.02 0.08 0.18 0.06 0.22 0.21 0.20 
Mechanical Engineering 0.10 0.05 0.22 0.16 0.28 0.05 0.06 0.01 
Electrical Engineering 0.57 -0.29 0.59 0.21 0.23 0.71 0.65 0.59 
Shipbuilding -0.40 0.39 -0.27 0.01 0.19 -0.65 -0.57 0.59 
Motor and Cycle 0.62 -0.16 0.86 0.40 0.61 0.64 0.61 0.47 
Aircraft 0.45 -0.64 1.64 -0.12 0.61 0.74 0.61 0.41 
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Railway Carriage and Wagon 
Building 0.06 0.12 0.10 0.20 0.24 -0.03 -0.01 0.05 
Carriage, Cart and Wagon -0.15 0.09 0.04 -0.07 0.14 -0.21 -0.20 0.22 
Copper and Brass (Smelting, Rolling, 
etc.) 0.72 -0.12 0.90 0.53 0.69 0.72 0.69 0.54 
Aluminium, Lead, Tin, etc. 
(Smelting, Rolling, etc.) 0.52 -0.22 0.06 0.25 -0.14 0.67 0.63 0.66 
Gold and Silver Refining -0.26 -0.24 0.55 -0.40 0.25 -0.14 -0.19 0.25 
Finished Brass 0.25 -0.07 0.58 0.16 0.47 0.24 0.23 0.13 
Plate and Jewellery -0.02 -0.01 0.40 -0.03 0.39 -0.06 -0.06 0.14 
Watch and Clock 1.94 -0.51 0.89 0.86 0.25 2.20 2.10 2.02 
Grain Milling 0.65 -0.14 0.70 0.45 0.49 0.67 0.65 0.53 
Bread, Cakes, etc. 0.46 -0.27 0.43 0.04 0.13 0.61 0.55 0.52 
Biscuit 0.44 -0.22 0.75 0.18 0.44 0.51 0.47 0.36 
Cocoa and Sugar Confectionery 0.39 -0.02 0.28 -0.19 0.25 0.38 0.37 0.32 
Preserved Foods 0.26 -0.15 0.35 0.10 0.17 0.34 0.30 0.27 
Bacon Curing and Sausage 0.72 -0.37 0.95 0.26 0.42 0.89 0.81 0.70 
Butter, Cheese, Condensed Milk and 
Margarine 0.76 -0.24 0.38 0.43 0.12 0.89 0.84 0.81 
Sugar and Glucose -0.16 0.02 0.21 -0.14 0.24 -0.20 -0.20 0.24 
Fish Curing -0.17 0.26 0.18 0.12 0.59 -0.36 -0.31 0.40 
Cattle, Dog and Poultry Foods 1.09 -0.44 2.25 0.45 1.25 1.18 1.09 0.73 
Ice -0.01 0.09 0.20 0.10 0.32 -0.09 -0.07 0.13 
Brewing and Malting -0.03 0.09 0.20 0.06 0.32 -0.12 -0.10 0.15 
Spirit Distilling 0.82 0.11 0.26 1.04 0.41 0.71 0.73 0.66 
Spirit Rectifying, Compounding and 
Methylating 0.52 -0.32 2.33 0.15 1.52 0.51 0.45 0.04 
Aerated Waters, Cider, Vinegar and 
British Wine 0.51 -0.13 0.75 0.34 0.55 0.52 0.50 0.37 
Wholesale Bottling 0.21 -0.10 0.83 0.11 0.66 0.20 0.18 0.03 
Tobacco -0.06 0.08 0.11 0.01 0.20 -0.13 -0.11 0.15 
Chemicals, Dyestuffs and Drugs 0.62 -0.10 0.94 0.47 0.76 0.60 0.58 0.41 
Fertiliser, Disinfectant, Glue, etc.  -0.02 -0.13 0.52 -0.13 0.35 0.01 -0.01 0.09 
Soap, Candle and Perfumery 0.53 -0.08 0.35 0.41 0.25 0.55 0.53 0.47 
Paint, Colour and Varnish 0.26 -0.17 0.60 0.08 0.37 0.32 0.28 0.20 
Seed Crushing 1.21 -0.05 0.50 1.10 0.43 1.19 1.18 1.09 
Oil and Tallow 0.50 -0.20 0.83 0.25 0.52 0.56 0.52 0.39 
Petroleum -0.45 0.26 0.07 -0.55 0.45 -0.64 -0.58 0.65 
Explosives and Fireworks 0.20 -0.13 0.29 0.06 0.13 0.27 0.24 0.21 
Starch and polishes 0.17 -0.10 0.40 0.07 0.28 0.20 0.18 0.12 
Match 0.08 0.06 0.44 0.15 0.54 -0.01 0.00 0.10 
Ink, Gum, and Typewriter Requisites 0.23 -0.24 0.54 -0.01 0.24 0.34 0.29 0.23 
Rubber 0.39 -0.07 0.37 0.31 0.29 0.40 0.39 0.33 
Scientific Instruments, Appliances 
and Apparatus 0.23 -0.19 0.73 0.04 0.45 0.29 0.26 0.15 
Plastic Materials, Buttons and Fancy 
Articles 1.27 -0.66 2.12 0.37 0.88 1.52 1.39 1.10 
Coke and By-Products 0.19 0.08 0.09 0.30 0.19 0.13 0.14 0.11 
Manufactured Fuel -0.10 0.37 0.02 0.67 0.62 -0.36 -0.29 0.37 
Linoleum and Oil-cloth 0.76 0.03 0.52 0.81 0.57 0.69 0.69 0.58 
Musical Instruments -0.57 0.51 -0.54 -0.12 -0.07 -0.88 -0.77 0.77 
Brush 0.30 -0.08 0.62 0.20 0.50 0.30 0.28 0.17 
Games and Toys 0.50 -0.64 0.70 -0.08 0.03 0.88 0.76 0.75 
Sports Requisites -0.01 0.03 -0.03 0.02 0.00 -0.03 -0.02 0.02 
Manufactured Abrasives 0.80 -0.26 0.84 0.43 0.46 0.90 0.84 0.73 
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Incandescent Mantles -0.23 0.26 1.00 0.04 1.70 -0.51 -0.46 0.71 
Cinematograph Film Printing 0.47 -0.33 0.80 0.11 0.35 0.62 0.56 0.46 
Brick and Fireclay 0.42 -0.22 0.69 0.16 0.38 0.50 0.46 0.37 
China and Earthenware 0.14 -0.01 0.63 0.13 0.61 0.09 0.08 0.04 
Glass 0.41 -0.17 0.19 0.21 0.02 0.51 0.47 0.47 
Cement 0.21 0.07 0.41 0.30 0.52 0.12 0.14 0.04 
Building Materials 0.12 -0.06 0.29 0.06 0.21 0.14 0.12 0.08 
Timber (Sawmilling, etc.) 0.34 -0.18 0.48 0.13 0.25 0.42 0.38 0.32 
Furniture and Upholstery 0.23 -0.19 1.16 0.03 0.82 0.25 0.21 0.02 
Coopering -0.10 0.17 -0.07 0.08 0.12 -0.21 -0.18 0.20 
Cane and Wicker Furniture and 
Basketware 0.19 -0.17 1.25 0.02 0.93 0.18 0.15 0.07 
Wooden Crates, Cases, Boxes, and 
Trunks 0.09 0.05 0.40 0.15 0.48 0.02 0.03 0.06 
Paper 0.60 -0.12 0.66 0.43 0.49 0.62 0.59 0.48 
Wallpaper 0.35 -0.06 0.22 0.28 0.15 0.37 0.36 0.33 
Printing, Bookbinding, Stereotyping, 
Engraving, etc. 0.04 0.00 0.54 0.05 0.55 -0.01 -0.01 0.12 
Manufactured stationery 0.43 -0.18 1.03 0.21 0.71 0.45 0.41 0.24 
Printing and Publication of 
Newspapers and Periodicals 0.09 -0.11 0.27 -0.02 0.14 0.14 0.12 0.09 
Cardboard Box 0.46 -0.24 0.71 0.17 0.38 0.56 0.51 0.41 
Pens, Pencils, and Artists' Materials 0.07 0.00 0.23 0.07 0.23 0.05 0.05 0.00 

Sources:  
Output: Recalculated on the basis of censual data on Net Output from the 1935 Census of Production (for the 
methodology see: Bowley, Schwartz, and Rhodes 1938, pp. 1-2 and pp. 24 - 31); 
Labour input: from “Average number of persons employed (excluding out-workers)” in Table I.A of the 1935 
Census of Production; 
Electricity Consumption:  “Electricity consumed – Total”  in Table IX of the 1935 Census of Production 
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DATA APPENDIX: SOURCES AND METHODS 
 
 
1. Great Britain 
    
1.1 Estimates of Electricity consumption in the manufacturing sector  
 
From the industrial production census data for 1930, 1935, and 1948 we derive the 
consumption of purchased electricity by the manufacturing sector in GWh. This can be 
compared with the data for the sales of electricity to industry (Ministry of Power, Statistical 
Digest 1967, Table 85, p 140).  This shows that over time the consumption of electricity by 
the manufacturing sector accounted for an increasing share of the total sales of electricity to 
industry.  We assumed that the rate of increase of the ratio of consumption to sales was 
constant between 1918 and 1935, and between 1935 and 1948.  Using this assumption and 
using the dynamic implicit in the sales data, we recalculated a series of the consumption of 
purchased electricity by the manufacturing sector for the years 1920 – 1948 which is 
consistent with the census observations.  This is reported in table A1, column k. We then 
calculated the ratio between the census data for the consumption of purchased electricity by 
the manufacturing sector and the census data for the total consumption of electricity by the 
manufacturing sector.  We then assumed that the rate of increase of this ratio was constant 
between census observations.  We also assumed that the data from the 1912 census of 
production on the capacity of electric motors in the manufacturing sector driven by purchased 
electricity as a proportion of the capacity of all the electric motors in the manufacturing sector 
reflected the ratio between the purchases of electricity and the total consumption of electricity 
in the manufacturing sector in the same year.  Under this assumption we were able to extend 
backward to 1912 the series for the ratio between consumption of purchased electricity and 
the total consumption of electricity.  The resulting series is in table A1, column j.  Using this 
series and the estimated series for the consumption of purchased electricity by the 
manufacturing sector, we were able to construct a series for the consumption of electricity in 
the manufacturing sector for Great Britain (Table A1, last column). 
 
1.2 Employment in the manufacturing sector 
 
We combined census data on employment with Broadberry’s index for employment in the 
manufacturing sector (Broadberry 1997, Table A3.1(a), pp. 43 – 44) to obtain our series on 
employment in the manufacturing sector.  We interpolated the missing data for the period of 
the First World War using the same method of backward chaining used by Broadberry 1997 
for his output figures.  In practice this meant observing that the figure for 1920 in 
Broadberry’s index of Employment in manufacturing (1929 = 100) equals 110.5 and is 
obtained using Feinstein (1972) figure for employment in the British manufacturing sector 
excluding Southern Ireland.  In column (b) of table A2 we rebased the figures for the years 
1913 - 1919 for Civilian Employment in Britain including Southern Ireland contained in 
Feinstein 1972, Table 57. We compared the 1913 index number for 1913=105.8 in column (d) 
and the original figure in the Broadberry index which was 102.2 [note that column (d) is 
obtained by chaining backward Broadberry’s index for 1920 using the war-year figures from 
column (c)]. We thus scaled down each war-year figure linearly so as to force the figure for 
1913 to be 102.2.  The resulting index is presented in Table A2.     
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Table A1: Consumption of electricity in Great Britain’s manufacturing sector. 

Sales of 
electricity 
to industry 

(GWh).

Consumption of 
purchased 

electricity by the 
manufacturing 
sector (GWh - 
our estimate).

Consumption of 
electricity - 

manufacturing 
sector (GWh - our 

estimate).

Great Britain Purchased Generated Total Estimated censual 
data

1912 
census 
capacity 
figures

Estimated Great Britain Great Britain

a b c d e =b /a f g =b /d h j k = a xf l = k xj
1912 0.733 0.474 0.474
1913 0.737 0.478
1914 0.741 0.483
1915 0.745 0.487
1916 0.748 0.492
1917 0.752 0.497
1918 0.756 0.501
1919 0.760 0.506
1920 2,545 0.763 0.510 1,942.6 3,806.2
1921 2,081 0.767 0.515 1,596.2 3,099.7
1922 2,456 0.771 0.520 1,893.1 3,643.6
1923 2,989 0.775 0.524 2,315.1 4,416.9
1924 3,435 0.778 0.529 2,673.5 5,056.3
1925 3,709 0.782 0.533 2,900.6 5,438.7
1926 3,592 0.786 0.538 2,822.6 5,247.3
1927 4,375 0.790 0.542 3,454.2 6,367.3
1928 4,762 0.793 0.547 3,777.6 6,905.0
1929 5,318 0.797 0.552 4,238.6 7,683.3
1930 5,355 4,288.2 3,420.0 7,709.0 0.801 0.801 0.556 0.556 4,288.2 7,709.0
1931 5,282 0.805 0.558 4,249.5 7,618.1
1932 5,518 0.808 0.559 4,460.1 7,973.2
1933 6,073 0.812 0.561 4,931.4 8,791.3
1934 7,060 0.816 0.563 5,759.4 10,238.7
1935 7,853 6,435.7 4,973.7 11,409.4 0.820 0.820 0.564 0.564 6,435.7 11,409.4
1936 8,914 0.826 0.582 7,362.4 12,653.5
1937 10,019 0.832 0.600 8,339.4 13,907.7
1938 10,320 0.839 0.617 8,656.2 14,020.3
1939 11,672 0.845 0.635 9,865.2 15,531.2
1940 13,874 0.852 0.653 11,815.4 18,095.0
1941 16,244 0.858 0.671 13,938.1 20,779.9
1942 19,142 0.864 0.689 16,547.6 24,033.3
1943 20,516 0.871 0.706 17,867.1 25,296.5
1944 19,976 0.877 0.724 17,525.0 24,203.0
1945 17,679 0.884 0.742 15,623.4 21,059.6
1946 17,632 0.890 0.760 15,695.0 20,661.1
1947 17,606 0.897 0.777 15,784.9 20,304.2
1948 19,121 17,266.0 4,446.7 21,712.7 0.903 0.903 0.795 0.795 17,266.0 21,712.7

Manufacturing sector - 
Consumption of electricity 

(GWh).
Purchased/total

Consumption of 
purchased 

electricity by the 
manufacturing 

sector / sales of 
electricity to 

industry

 
Sources: a Ministry of Power, Statistical Digest 1967, Table 85, p 140; b, c, and d Board of Trade, Business Statistics 
Office, Census of Production: Final Report, (censuses of 1930, 1935, 1948 and 1951); h Board of Trade, Business 
Statistics Office, Census of Production: Final Report, (1924 census). 
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Table A2. UK Employment in the manufacturing sector (WW1 incl.) 
Year (a) Employment 

in 
manufacturing 

1929 = 100 
(Source: 

Broadberry 
1997) 

(b) Total 
Civilian 

Employment 
(including 
Southern 
Ireland) 

Feinstein 
1972 

(c) Employment 
in the 

manufacturing 
industry 

(excluding 
Southern 
Ireland) 

(d) (e) Employment 
in 

manufacturing 
1929 = 100 

1869 66.9   66.9 66.9 
1870 68.8   68.8 68.8 
1871 70.8   70.8 70.8 
1872 71.7   71.7 71.7 
1873 72.1   72.1 72.1 
1874 72.2   72.2 72.2 
1875 72.3   72.3 72.3 
1876 71.8   71.8 71.8 
1877 71.5   71.5 71.5 
1878 70.5   70.5 70.5 
1879 67.6   67.6 67.6 
1880 72.3   72.3 72.3 
1881 74.1   74.1 74.1 
1882 75.9   75.9 75.9 
1883 76.6   76.6 76.6 
1884 73.0   73.0 73.0 
1885 72.9   72.9 72.9 
1886 73.0   73.0 73.0 
1887 75.9   75.9 75.9 
1888 79.0   79.0 79.0 
1889 82.4   82.4 82.4 
1890 85.5   85.5 85.5 
1891 83.1   83.1 83.1 
1892 81.5   81.5 81.5 
1893 84.5   84.5 84.5 
1894 82.4   82.4 82.4 
1895 84.1   84.1 84.1 
1896 86.6   86.6 86.6 
1897 87.9   87.9 87.9 
1898 89.1   89.1 89.1 
1899 90.6   90.6 90.6 
1900 90.3   90.3 90.3 
1901 90.2   90.2 90.2 
1902 90.4   90.4 90.4 
1903 90.9   90.9 90.9 
1904 90.4   90.4 90.4 
1905 92.1   92.1 92.1 
1906 94.3   94.3 94.3 
1907 95.0   95.0 95.0 
1908 91.6   91.6 91.6 
1909 92.4   92.4 92.4 
1910 96.2   96.2 96.2 
1911 98.6   98.6 98.6 
1912 99.6   99.6 99.6 
1913 102.2 19,919.0 6,899,382.6 105.8 102.2 
1914  19,440.0 6,733,470.4 103.2 100.2 
1915  18,400.0 6,373,243.6 97.7 95.2 
1916  17,700.0 6,130,783.3 94.0 91.9 
1917  17,100.0 5,922,960.1 90.8 89.3 
1918  17,060.0 5,909,105.2 90.6 89.6 
1919  19,030.0 6,591,458.0 101.0 100.5 
1920 110.5 20,810.0 7,208,000.0 110.5 110.5 
1921 86.9   86.9 86.9 
1922 90.9   90.9 90.9 
1923 93.3   93.3 93.3 
1924 94.9   94.9 94.9 
1925 95.5   95.5 95.5 
1926 92.8   92.8 92.8 
1927 98.7   98.7 98.7 
1928 98.6   98.6 98.6 
1929 100.0   100.0 100.0 
1930 93.0   93.0 93.0 
1931 86.8   86.8 86.8 
1932 88.1   88.1 88.1 
1933 91.4   91.4 91.4 
1934 95.6   95.6 95.6 
1935 97.9   97.9 97.9 
1936 103.3   103.3 103.3 
1937 108.5   108.5 108.5 
1938 106.9   106.9 106.9 
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1.3 Consumption of Electricity per Worker in the Manufacturing Sector 
 

  
Having estimated the consumption of electricity by the manufacturing sector, and combining 
it with census data on employment in the manufacturing sector excluding outworkers and 
with Broadberry’s index for employment in the manufacturing sector (Broadberry 1997, 
Table A3.1(a), pp. 43 – 44) adjusted for the years of WW1 as described above, we were able 
to construct a series for electricity consumption in the British manufacturing sector per 
employee (purchased and self-generated - in KWh). This is presented in Table A.3 

 
Table A.3.  Per caput electricity consumption in the UK manufacturing sector 

Year Electricity consumption in the manufacturing sector per employee 
(purchased and self-generated - in kWh). 

1920 657.0 
1921 680.4 
1922 764.6 
1923 903.0 
1924 1016.3 
1925 1086.3 
1926 1078.6 
1927 1230.5 
1928 1335.8 
1929 1465.6 
1930 1581.2 
1931 1666.0 
1932 1717.9 
1933 1825.8 
1934 2032.9 
1935 2212.2 
1936 2325.1 
1937 2433.1 
1938 2489.5 
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2. FRANCE.    

 
2.1 Electricity consumption in the manufacturing sector  

 
Electricity consumption in French manufacturing is measured by: (i) the electricity consumed 
as “force motrice” (largely through the grid); (ii) electricity consumption of the 
electrochemical and electrometallurgical industries; and (iii) the electricity consumption of 
the metallurgical industries and other industries.   

 
Table A4: Consumption of electricity in the French manufacturing sector.  

Year 

(i) Electricity 
consumption 

(through the grid) - 
force motrice 
(1000kWh) 

(ii) Electricity consumption 
- electrochemical and 
electrometallurgical 

industries (1000kWh) 

(iii) Electricity 
consumption  - 
metallurgical 

industries and other 
industries 

(1000kWh) 

Electricity 
consumption  - 
manufacturing 

industries (1000kWh) 
(sum of previous three 

columns) 
1923 575,238* 1,500,000 3,517,408* 5,592,646 
1924 699,303* 1,600,000 4,276,033* 6,575,337 
1925 790,632* 1,850,000 4,834,480* 7,475,112 
1926 880,284 2,102,052 5,382,676 8,365,012 
1927 857,031 2,164,000 5,342,536 8,363,567 
1928 886,079 2,636,769 6,244,850 9,767,698 
1929 967,384 2,874,462 6,837,072 10,678,918 
1930 1,018,139 2,934,295 7,351,029 11,303,463 
1931 1,008,805 2,232,000 6,980,695 10,221,500 
1932 945,305 1,854,381 6,508,753 9,308,439 
1933 968,498 2,162,051 7,070,321 10,200,870 
1934 969,407 2,188,256 7,104,892 10,262,555 
1935 961,653 2,240,104 7,362,901 10,564,658 
1936 916,000 2,502,000 7,832,000 11,250,000 
1937 811,661 3,463,739 8,728,739 13,004,139 
1938 801,234 3,547,538 8,611,426 12,960,198 
1939 816,036 4,222,765 9,208,036 14,246,837 
1940 737,801 4,343,330 7,912,582 12,993,713 
1941 794,392(a) 3,825,000(a) 7,648,000(a) 12,267,392 
1942 847,119(a) 2,923,763(a)(b) 7,447,869(a)(b) 11,218,751 
1943 875,155** 3,127,000(a) 7,537,000(a) 11,539,155 
1944 903,191** 1,851,000(a) 5,641,000(a) 8,395,191 
1945 931,227 2,457,000 7,317,472 10,705,699 
1946 1,142,430** 3,573,000 10,327,000 15,042,430 
1947 1,353,632 4,407,943 12,107,751 17,869,326 
1948 1,426,430** 4,430,000 14,480,000 20,336,430 
1949 1,499,227** 3,940,000 15,921,000 21,360,227 
1950 1,572,025** 4,487,000 17,312,000 23,371,025 
1951 1,644,822** 5,624,000 19,664,000 26,932,822 
1952 1,717,620 6,823,525 20,530,000 29,071,145 

Notes: *estimated see below;  **linearly interpolated; (a) does not include Moselle, Haut Rhin, and Bas Rhin; (b) does 
not include Corse 
 

These original data series were published in the following official publications for the three 
columns above:  
 
Column (i) 

  
France - Ministère de l'industrie et du commerce, Service technique de l'énergie électrique et 
des grands barrages,  Statistique de la production et de la distribution de l'énergie électrique 
en France pour l'année 1952, Paris: Imprimerie Nationale 1954, p. 33, and table 8 p.52;  

 
France - Ministère de l'industrie et du commerce, Service central de l'électricité,  Statistique 
de la production et de la distribution de l'énergie électrique en France pour l'année 1947, 
Paris: Imprimerie Nationale 1949, table 3, p. 17 and table 8, p. 25;  
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France - Ministère de la production industrielle, Service central de l'électricité,  Statistique de 
la production et de la distribution de l'énergie électrique en France pour l'année 1945, Paris: 
Imprimerie Nationale 1947, table 6, p. 13; 
 
France - Ministère de la production industrielle, Service central de l'électricité,  Statistique de 
la production et de la distribution de l'énergie électrique en France pour l'année 1942, Paris: 
Imprimerie Nationale 1945, table 6, p. 13; 
 
France - Secrétariat d'Etat a la production industrielle,  Statistique de la production et de la 
distribution de l'énergie électrique en France pour l'année 1939, Paris: Imprimerie Nationale 
1941, table 13, p. 14; 
 
France - Ministère de la Production industrielle et du travail (Service central de l'électricité),  
Statistique de la production et de la distribution de l'énergie électrique en France pour 
l'année 1938, Paris: Imprimerie Nationale 1940, table 13, p. 17;  
 
France - Ministère des travaux publics (Service central des forces hydrauliques et des 
distributions d'énergie électrique),  Statistique de la production et de la distribution de 
l'énergie électrique en France pour l'année 1935, Paris: Imprimerie Nationale 1937, table 13, 
p. 17;  
 
France - Ministère des travaux publics (Service central des forces hydrauliques et des 
distributions d'énergie électrique),  Statistique de la production et de la distribution de 
l'énergie électrique en France pour l'année 1934, Paris: Imprimerie Nationale 1936, table 13, 
p. 67 ; 
 
France - Ministère des travaux publics (Service central des forces hydrauliques et des 
distributions d'énergie électrique),  Statistique de la production et de la distribution de 
l'énergie électrique en France pour l'année 1927, Paris: Imprimerie Nationale 1929, table 7, 
p. 12 ; 
 
France - Ministère des travaux publics (Service central des forces hydrauliques et des 
distributions d'énergie électrique),  Statistique de la production et de la distribution de 
l'énergie électrique au 1er juillet 1928, Paris: Imprimerie Nationale (1930?), table 7, p. 83 ; 
 
France - Ministère des travaux publics (Service central des forces hydrauliques et des 
distributions d'énergie électrique),  Statistique de la production et de la distribution de 
l'énergie électrique en France pour l'année 1929, Paris: Imprimerie Nationale 1931, table 7, 
p. 12 ; 
 
France - Ministère des travaux publics (Service central des forces hydrauliques et des 
distributions d'énergie électrique),  Statistique de la production et de la distribution de 
l'énergie électrique au 1er janvier 1929, Paris: Imprimerie Nationale 1930, table 7, p. 83 and 
table 7, p. 89 ; 
 
France - Ministère des travaux publics (Service central des forces hydrauliques et des 
distributions d'énergie électrique),  Statistique de la production et de la distribution de 
l'énergie électrique au 1er janvier 1931, Paris: Imprimerie Nationale 1932, table 7, p. 100 ; 
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France - Ministère des travaux publics (Service central des forces hydrauliques et des 
distributions d'énergie électrique),  Statistique de la production et de la distribution de 
l'énergie électrique en France pour l'année 1932, Paris: Imprimerie Nationale 1934, table 7, 
p. 116 ;  
 
France - Ministère des travaux publics (Service central des forces hydrauliques et des 
distributions d'énergie électrique),  Statistique de la production et de la distribution de 
l'énergie électrique en France pour l'année 1933, Paris: Imprimerie Nationale 1935, table 7, p. 
24. 
 
The figures for the years 1923, 1924, and 1925 were estimated assuming that ‘force motrice’ 
was 8.82% of total electricity consumption in those years.  The figure of 8.82% is that 
observed for 1926. The source for total consumption of electricity in France in 1923, 1924, 
and 1925 is the same. 

 
Column (ii) 
 
France - Ministère de l'industrie et du commerce, Service technique de l'énergie électrique et 
des grands barrages,  Statistique de la production et de la distribution de l'énergie électrique 
en France pour l'année 1952, Paris: Imprimerie Nationale 1954, p. 32 ; 
 
France - Ministère de l'industrie et du commerce, Service central de l'électricité,  Statistique 
de la production et de la distribution de l'énergie électrique en France pour l'année 1947, 
Paris: Imprimerie Nationale 1949, table 3, p. 16; 
 
France - Ministère de la production industrielle, Service central de l'électricité,  Statistique de 
la production et de la distribution de l'énergie électrique en France pour l'année 1945, Paris: 
Imprimerie Nationale 1947, table 6, p. 13; 
 
France - Ministère de la production industrielle, Service central de l'électricité,  Statistique de 
la production et de la distribution de l'énergie électrique en France pour l'année 1942, Paris: 
Imprimerie Nationale 1945, table 6, p. 13; 
 
France - Secrétariat d'Etat a la production industrielle,  Statistique de la production et de la 
distribution de l'énergie électrique en France pour l'année 1939, Paris: Imprimerie Nationale 
1941, table 13, p. 14; 
 
France - Ministère de la Production industrielle et du travail (Service central de l'électricité),  
Statistique de la production et de la distribution de l'énergie électrique en France pour 
l'année 1938, Paris: Imprimerie Nationale 1940, table 13, p. 17; 
 
France - Ministère des travaux publics (Service central des forces hydrauliques et des 
distributions d'énergie électrique),  Statistique de la production et de la distribution de 
l'énergie électrique en France pour l'année 1935, Paris: Imprimerie Nationale 1937, table 13, 
p. 17; 
 
France - Ministère des travaux publics (Service central des forces hydrauliques et des 
distributions d'énergie électrique),  Statistique de la production et de la distribution de 
l'énergie électrique en France pour l'année 1934, Paris: Imprimerie Nationale 1936, table 13, 
p. 67 ; 
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France - Ministère des travaux publics (Service central des forces hydrauliques et des 
distributions d'énergie électrique),  Statistique de la production et de la distribution de 
l'énergie électrique en France pour l'année 1927, Paris: Imprimerie Nationale 1929, table 7, 
p. 13 ; 
 
France - Ministère des travaux publics (Service central des forces hydrauliques et des 
distributions d'énergie électrique),  Statistique de la production et de la distribution de 
l'énergie électrique au 1er juillet 1928, Paris: Imprimerie Nationale (1930?), table 7, p. 83 ; 
 
France - Ministère des travaux publics (Service central des forces hydrauliques et des 
distributions d'énergie électrique),  Statistique de la production et de la distribution de 
l'énergie électrique en France pour l'année 1929, Paris: Imprimerie Nationale 1931, table 7, 
p. 13 ; 
 
France - Ministère des travaux publics (Service central des forces hydrauliques et des 
distributions d'énergie électrique),  Statistique de la production et de la distribution de 
l'énergie électrique au 1er janvier 1929, Paris: Imprimerie Nationale 1930, table 7, p. 83 ;  
 
France - Ministère des travaux publics (Service central des forces hydrauliques et des 
distributions d'énergie électrique),  Statistique de la production et de la distribution de 
l'énergie électrique au 1er janvier 1931, Paris: Imprimerie Nationale 1932, table 7, p. 100 ; 
 
France - Ministère des travaux publics (Service central des forces hydrauliques et des 
distributions d'énergie électrique),  Statistique de la production et de la distribution de 
l'énergie électrique en France pour l'année 1932, Paris: Imprimerie Nationale 1934, table 7, 
p. 116 ; 
 
France - Ministère des travaux publics (Service central des forces hydrauliques et des 
distributions d'énergie électrique),  Statistique de la production et de la distribution de 
l'énergie électrique en France pour l'année 1933, Paris: Imprimerie Nationale 1935, table 7, 
p. 24. 

  
Column (iii)  
 
France - Ministère de l'industrie et du commerce, Service technique de l'énergie électrique et 
des grands barrages,  Statistique de la production et de la distribution de l'énergie électrique 
en France pour l'année 1952, Paris: Imprimerie Nationale 1954, p. 33, and table 8 p.52 ; 
 
France - Ministère de l'industrie et du commerce, Service central de l'électricité,  Statistique 
de la production et de la distribution de l'énergie électrique en France pour l'année 1947, 
Paris: Imprimerie Nationale 1949, table 3, p. 17 and table 8, p. 25; 
 
France - Ministère de la production industrielle, Service central de l'électricité,  Statistique de 
la production et de la distribution de l'énergie électrique en France pour l'année 1945, Paris: 
Imprimerie Nationale 1947, table 6, p. 13; 
 
France - Ministère de la production industrielle, Service central de l'électricité,  Statistique de 
la production et de la distribution de l'énergie électrique en France pour l'année 1942, Paris: 
Imprimerie Nationale 1945, table 6, p. 13, and table 13 p. 23; 



 46 

 
France - Secrétariat d'Etat a la production industrielle,  Statistique de la production et de la 
distribution de l'énergie électrique en France pour l'année 1939, Paris: Imprimerie Nationale 
1941, table 13, p. 14; 
 
France - Ministère de la Production industrielle et du travail (Service central de l'électricité),  
Statistique de la production et de la distribution de l'énergie électrique en France pour 
l'année 1938, Paris: Imprimerie Nationale 1940, table 13, p. 17; 
 
France - Ministère des travaux publics (Service central des forces hydrauliques et des 
distributions d'énergie électrique),  Statistique de la production et de la distribution de 
l'énergie électrique en France pour l'année 1935, Paris: Imprimerie Nationale 1937, table 13, 
p. 17; 
 
France - Ministère des travaux publics (Service central des forces hydrauliques et des 
distributions d'énergie électrique),  Statistique de la production et de la distribution de 
l'énergie électrique en France pour l'année 1934, Paris: Imprimerie Nationale 1936, table 13, 
p. 67 ; 
 
France - Ministère des travaux publics (Service central des forces hydrauliques et des 
distributions d'énergie électrique),  Statistique de la production et de la distribution de 
l'énergie électrique en France pour l'année 1927, Paris: Imprimerie Nationale 1929, table 7, 
p. 12 ; 
 
France - Ministère des travaux publics (Service central des forces hydrauliques et des 
distributions d'énergie électrique),  Statistique de la production et de la distribution de 
l'énergie électrique au 1er juillet 1928, Paris: Imprimerie Nationale (1930?), table 7, p. 83 ; 
 
France - Ministère des travaux publics (Service central des forces hydrauliques et des 
distributions d'énergie électrique),  Statistique de la production et de la distribution de 
l'énergie électrique en France pour l'année 1929, Paris: Imprimerie Nationale 1931, table 7, 
p. 12 ; 
 
France - Ministère des travaux publics (Service central des forces hydrauliques et des 
distributions d'énergie électrique),  Statistique de la production et de la distribution de 
l'énergie électrique au 1er janvier 1929, Paris: Imprimerie Nationale 1930, table 7, p. 83 ; 
 
France - Ministère des travaux publics (Service central des forces hydrauliques et des 
distributions d'énergie électrique),  Statistique de la production et de la distribution de 
l'énergie électrique au 1er janvier 1931, Paris: Imprimerie Nationale 1932, table 7, p. 100 ; 
 
France - Ministère des travaux publics (Service central des forces hydrauliques et des 
distributions d'énergie électrique),  Statistique de la production et de la distribution de 
l'énergie électrique en France pour l'année 1932, Paris: Imprimerie Nationale 1934, table 7, 
p. 116 ; 
 
France - Ministère des travaux publics (Service central des forces hydrauliques et des 
distributions d'énergie électrique),  Statistique de la production et de la distribution de 
l'énergie électrique en France pour l'année 1933, Paris: Imprimerie Nationale 1935, table 7, 
p. 24. 
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The figures for the years 1923, 1924, and 1925 were estimated assuming that ‘force motrice’ 
was 53.96% of total electricity consumption in those years.  The figure of 53.96% is that 
observed for 1926.  The source for total consumption of electricity in France in 1923, 1924, 
and 1925 is the same. 
 
These series were then re-published in the Annuaire Statistique.  The aggregate is likely to 
overestimate the consumption by the manufacturing sector as the data includes consumption 
of “force motrice” by the construction industry and by non industrial users.  However, the 
magnitude of this bias is likely to be small as the bulk of electricity was consumed by the 
manufacturing industry.   
 
 

 
2.1 Employment in the manufacturing sector 
 
Data for this aggregate were recalculated by INSEE in 1961 for the years 1906, 1921, 1926, 
1931, 1936, 1946, 1954.  We used the dynamic of the Industrial Production Index 1913=100 
as published in the Résume Rétrospectif in the 1938 Annuaire Statistique to interpolate the 
data for the years 1922, 1923, 1924, 1925 according to the formula: 

 
Lt  = L1921*(1+ (α1*( Yt- Y1921)/ Y1921)) 
 
Where α1 = (L1926- L1921)/L1921/( Y1926-Y1921)/ Y1921 

   
To interpolate the data for the years 1927, 1928, 1929, and 1930 we used the formula: 

 
Lt  = L1926*(1+(α2*( Yt- Y1926)/ Y1926)) 
 
Where α2 = (L1931- L1926)/L1926/( Y1931-Y1926)/ Y1926 

 
For the years 1932, 1933, 1934, 1935, 1937, and 1938 we applied the employment dynamic 
derived from the index number of the employed in industrial establishments with more than 
100 employees (previous year =100) as published in the Annuaire Statistique (Tav 5 ombres 
indices des effectifs des établissements occupant au moins 100 personnes, par rapport aux 
effectifs du mois correspondant de l'année précédente).   
 
 
2.3 Consumption of Electricity per Worker in the Manufacturing Sector 
 
Having estimated the consumption of electricity by the manufacturing sector (see Table 
above), and combining it with these estimates of employment in the manufacturing sector, we 
were able to construct a series for electricity consumption in the French manufacturing sector 
per employee (purchased and self-generated - in KWh).  
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Table A.5 France Employment and per caput electricity consumption in the 
manufacturing sector. 

Year Manufacturing  
employment 

Electricity consumption in the manufacturing sector per employee 
(purchased and self-generated - in kWh). 

1921 4,841,000  
1922 5,027,915  
1923 5,109,183 1,095 
1924 5,279,845 1,245 
1925 5,271,718 1,418 
1926 5,418,000 1,544 
1927 4,746,000 1,762 
1928 5,460,000 1,789 
1929 5,964,000 1,791 
1930 6,006,000 1,882 
1931 5,334,000 1,916 
1932 4,837,352 1,924 
1933 4,743,428 2,151 
1934 4,597,694 2,232 
1935 4,394,363 2,404 
1936 4,429,000 2,540 
1937 4,687,702 2,774 
1938 4,843,360 2,676 

Note: for the interpolation estimation methods of the figures in italics see above. 
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3. GERMANY 
 
3.1 Electricity consumption in the manufacturing sector 

 
We used data on industrial consumption of electricity published in the Statistical Yearbook of 
1925, and 1932, and in the Statistical Handbook published in 1949.  These figures were 
combined with manufacturing sector employment data from Hoffmann (1965).  The basic 
assumption adopted was that the net consumption of the manufacturing sector is the total 
gross industrial consumption minus 3.3% of self-consumption by utilities (based on 1925 
data); minus 1.5% sold by industry to utilities (based on 1930 data); minus 19.3% consumed 
by the mining sector (based on 1930 data).  The data so calculated is presented in the second 
column of the Table A6.   

 
Table A6: Employment and consumption of electricity in the German 
manufacturing sector 

Year Industrial 
gross 
electricity 
consumption 
(purchased 
and self-
generated - 
in gigaWh). 

Electricity 
consumption in 
the 
manufacturing 
sector 
(purchased and 
self-generated - in 
gigaWh). 

Employment in 
manufacturing 
(*1000) 

Electricity 
consumption in the 
manufacturing 
sector per employee 
(purchased and 
self-generated - in 
kWh). 

1925 15,195 11,533 9,972 1,156.54 
1926   8,782  
1927   10,183  
1928   10,463  
1929   10,101  
1930 21,056 15,982 9,116 1,753.13 
1931   7,787  
1932   6,646  
1933 18,637 14,145 7,075 1,999.36 
1934 22,986 17,446 8,268 2,110.11 
1935 28,538 21,660 9,058 2,391.29 
1936 33,169 25,175 9,767 2,577.58 
1937 38,429 29,168 10,562 2,761.56 
1938 45,269 34,359 11,146 3,082.65 
1939 51,563 39,136 12,681 3,086.22 

Sources: Statististische Reichsamt, Statistisches Jahrbuch des Deutschen Reiches, 
Berlin (1928 edn. pp. 124-125; 1932 edn. pp. 114 – 115); Länderrat des 
Amerikanischen Besatzungsgebiets, Statistisches Handbuch von Deutschland 1928 - 
1944, Munich 1949, pp. 336 - 337. 

 
 
3.2 Employment in the manufacturing sector 

 
We have used the data from Hoffmann, W. G., Das wachstum der Deutschen wirtschaft seit 
der mitte des 19. Jahrhunderts, Berlin, Heidelberg and New York: Springer-Verlag 1965, 
Tab. 15, pp. 198 - 199.   
 
3.3  Consumption of Electricity per Worker in the Manufacturing Sector 
 
Electricity consumption in the German manufacturing sector per employee (purchased and 
self-generated - in KWh) is shown in Table A.6 last column. 
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4. USA 
 
4.1 Electricity consumption in the manufacturing sector 

 
We have used the data from Du Boff (1979[original 1964]), table 22, p. 84 and the data 
reported in the US Department of Commerce (1975): Historical Statistics of the U.S.: 
Colonial Times to 1970, Washington D.C.  This data is reproduced in column (i) of Table 
A.7. below. 
 

 
4.2 Employment in the manufacturing sector  
 

We have used the data from Kendrick (1961), Table D-II, pp. 465 - 466 and Table D-VII p. 
488.  They are reproduced in column (ii) of the table above.  

 
Consumption of Electricity per worker in the manufacturing sector  

 
We combined the data under column (i) and column (ii) to obtain a series for electricity 
consumption in the US manufacturing sector per employee (purchased and self-generated - in 
KWh). 
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Table A.7.  US electricity consumption and employment in the manufacturing 
sector. 

Year 
(i) Electricity consumption in the 

manufacturing sector (purchased and 
self-generated - in gigaWh). 

(ii) Manufacturing 
Employment 

Electricity consumption in the 
manufacturing sector per 

employee (purchased and self-
generated - in kWh). 

1902 1,300 6,384,280 203.6 
1903  6,627,390  
1904  6,246,870  
1905  6,986,770  
1906  7,356,720  
1907 5,100 7,694,960 662.8 
1908  6,891,640  
1909  7,684,390  
1910  8,033,200  
1911  8,033,200  
1912 9,250 8,392,580 1,102.2 
1913  8,477,140  
1914  8,181,180  
1915  8,551,130  
1916  10,083,780  
1917 20,750 10,781,400 1,924.6 

1918  10,992,800  

1919  10,601,710  
1920 26,913 10,580,570 2,543.6 
1921 23,993 8,181,180 2,932.7 
1922 27,364 8,952,790 3,056.5 
1923 32,585 10,168,340 3,204.6 
1924 34,967 9,534,140 3,667.6 
1925 39,725 9,798,390 4,054.2 
1926 46,350 10,009,790 4,630.5 
1927 51,012 9,882,950 5,161.6 
1928 52,699 9,914,660 5,315.3 
1929 55,122 10,570,000 5,214.9 
1930 53,930 9,428,440 5,719.9 
1931 50,410 7,990,920 6,308.4 
1932 43,504 6,754,230 6,441.0 
1933 46,561 7,282,730 6,393.3 
1934 50,593 8,445,430 5,990.6 
1935 56,706 8,995,070 6,304.1 
1936 62,949 9,745,540 6,459.3 
1937 64,757 10,696,840 6,053.8 

1938 58,452 9,238,180 6,327.2 
1939 70,518 10,094,350 6,985.9 
1940 83,276 11,024,510 7,553.7 
1941 104,037 13,286,490 7,830.3 
1942 122,762 15,442,770 7,949.5 
1943 143,995 17,577,910 8,191.8 
1944 145,015 17,239,670 8,411.7 
1945 134,955 15,379,350 8,775.1 
1946  14,702,870  
1947 140,947 15,421,630 9,139.6 
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5. JAPAN.    

 
5.1.1 Electricity consumption in the manufacturing sector 

 
The data on electricity consumption for manufacturing is reported as Table 10-5 
http://www.stat.go.jp/english/data/chouki/10.htm. 

The data was originally published in the "Electricity Enterprises Handbook" edited by the 
Federation of Electric Companies of Japan under the supervision of the Agency for Natural 
Resources and Energy. The data covers the period from 1930. 

 
 

5.2 Employment in the manufacturing sector.   
 
The number of workers in the manufacturing industry for the period 1920 to 1942 is reported 
in  Umemura, M., Akasaka, K., Minami, R., Takamatsu, N., Arai, K., Itoh, S., ‘Manpower’, in 
Ohkawa, K., Shinohara, M., and Umemura, M. (eds.), Estimates of long-term statistics of 
Japan since 1868, V. 2, Tokyo: Toyo Keizai Shinposha 1988, Table 19, p. 256.  This data is 
estimated on the basis of annual survey data on establishments with more that five employees 
up to 1938 and on all the establishments from 1939.   
 
 
Table A.7.  Japan: electricity consumption and employment in the manufacturing sector. 

Year (i) Electricity consumption in the 
manufacturing sector (gigaWh)  

(ii) Manufacturing 
Employment (000) 

Electricity consumption in the 
manufacturing sector per 

employee (purchased and self-
generated - in kWh). 

1930 3099.00 3741.4 828.298 
1931 3097.00 3664.2 845.2089 
1932 3989.00 3951.0 1009.621 
1933 5132.00 4203.1 1220.991 
1934 6232.00 4651.8 1339.69 
1935 7629.00 4969.2 1535.249 
1936 8874.00 5008.6 1771.749 
1937 10562.00 6031.2 1751.224 

1938 11340.00 6422.5 1765.681 
1939 12120.00 7001.7 1731.016 

 
  

http://www.stat.go.jp/english/data/chouki/10.htm
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